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 Introduction 

The following presentation will be a thorough practical and mathematical description of how to build 

optimized oscillators, mostly LC based, such as the one shown below, in Fig.1, but also with specific 

microwave resonators, crystals and other resonators. 

 

The oscillator below is from the MIMIC Program 

The acronym, “MIMIC” stood for Microwave/Millimeter-Wave Monolithic Integrated Circuits.  The 

DARPA program manager was Dr. Eliot Cohen.  In 2012 Eliot Cohen wrote an article on the MIMIC 

Program for IEEE MTT-S Microwave Magazine which is a good resource if you want to learn about this 

historic program. Here are the details: 

Eliot Cohen, "The MIMIC Program - A Retrospective", Microwave Magazine, June 2012, pp. 77-88. 

 

http://www.mtt.org/magazine.html
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for frequency tuning 
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This CAD tool was developed under the MIMIC Program
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 WHAT IS AN OSCILLATOR 

 An Oscillator is an Electronic Circuit that converts DC power  to RF power, this can range 

from a few Hz to Tera Hz and higher 

  An oscillator consists of an active device acting as an amplifier,  a resonator, and a feedback 

circuit 

  A small amount of energy feedback is needed to sustained oscillation and the majority of 

available energy appears at the output terminals 

  Resonators can be LC based circuits, transmission line based, crystal, ceramic, dielectric 

resonator ,YIG (Yttrium Garnet) based, and others 

For RF application, the most relevant features besides size are: 

 Output power 

 Harmonic content 

 Phase Noise 

 Power consumptions, to name a few 

 

  Introduction to Microwave Oscillators and Their Mathematical Treatment: 

The design of microwave oscillators has been and is the subject of many publications. To a certain 

degree, oscillators have been designed based on experimental data and experience, and the resulting 

performance has been measured and published. The designer, however, considers it important and useful 

to start from a set of specifications and then applies a synthesis procedure, which leads to a successful 

circuit. The following are popular transistor oscillator designs. 

History 

The first time an oscillator became important was when Maxwell's Equations were to be experimentally 

proven. Heinrich Hertz made the first known oscillator. He used a dipole as the resonator and a spark 

gap generator as the oscillator circuit as shown in Figure 1-1.
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Modern communications systems need oscillators as part of the design. In most cases these oscillators are 

part of a synthesizer and they are voltage-controlled, meaning that the frequency is determined by tuning 

diodes, frequently called varactors. The applied DC voltage varies the frequency. For high performance 

circuits the Colpitts oscillator is most frequently selected [1–30]. A large part of this work is taken from 

our book mentioned above and reproduced with permission. 

The Colpitts oscillator comes in three flavors. Figure 1a, shows the conventional circuit configuration. 

This type of circuit is based on a design developed by Edwin Henry Colpitts, known for his invention of 

this oscillator and hence carries his name [1]. It uses a capacitive voltage divider and an inductor. In reality 

this simple circuit is not used but rather a derivation of this. This is shown in Figure 1b. The advantage of 

this circuit is that the values for C1 and C2 are fixed and the frequency change occurs by changing C3. If 

the frequency of Figure 1a needs to be changed, a better choice is to vary the inductor L. 

Colpitts colleague Ralph Hartley [2] invented an inductive coupling oscillator. The advantage of such an 

oscillator having capacitors C1 and C2 replaced with a tap of the inductor has been used together with 

helical resonators. The frequency tuning is achieved purely capacitively. To minimize loading, the 

transistor of choice here is a FET, which has very high input impedance and provides minimum loading 

to the circuit. The disadvantage is that this circuit, using junction FETs, is limited to about 400 MHz. The 

transition frequency fT is about 500 MHz. FETs can also be used in the Colpitts oscillator as shown in 

Figure 1a, because of relatively lower loading than the bipolar transistor. The drawback of Figure 1a is 

the heavy loading of the tuned circuit by the transistor.  

Important: These oscillators are called one port oscillators as the resonator losses are compensated with 

the negative but noisy Re(Z11) resistor compensated are! The Im(Z11) adds to the AM to PM conversion. 
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 Transistor models and Noise Contributions  

 
For the design of oscillators we are looking at members of bipolar and field-effect transistor families.  In 

the case of the bipolar transistor, conventional microwave silicon transistors are manufactured with an fT 

up to 25 GHz, while the more advanced SiGe transistors take over from this frequency range.  Today, 

SiGe transistors are available up to 900 GHz and are used as part of an RFIC.  Their cousins, the 

heterojunction bipolar transistors (HBTs), based on GaAs technology, can achieve similar cut-off 

frequencies, but this technology is much more expensive for medium to large integrated circuits.  HBTs 

also have a higher flicker noise corner frequency.  SiGe transistors have a much lower flicker noise corner 

frequency and lower breakdown voltages (typically 2-3V).  However, because of the losses of the 

transmission line in practical circuits, there is not much difference between HBT and SiGe oscillator noise 

as fT is the same. 
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There is a similar competing situation between Bi-CMOS transistors implemented in a 0.062 micron 

technology and with GaAs FETs, specifically p-HEMTs.  The GaAs FETs have well-established 

performance with good models, and the Bi-CMOS transistors are currently being investigated as to what 

models are the best.  Also, there is the 1/f noise problem, specifically, with GaAs FETs more than with 

MOS transistors.  The 6 nm technology is somewhat impractical because of poor modeling.  This means 

that many CAD predictions do not translate in a good design. 

Noise in Semiconductors and Circuits 

Microwave applications generally use bipolar transistors and following are their noise contributions 

 

Johnson noise 

The Johnson noise (thermal noise) is due to the movement of molecules in solid state devices called 

"Brown's molecular movements" 

It is expressed as 𝑣𝑛
2 = 4𝑘𝑇0𝑅𝐵 (emf) (volt  2/Hz)  

 

The power of thermal noise can thus be written as 

 Noise Power =
𝑣𝑛

2

4𝑅
= 𝑘𝑇0𝐵(𝑊/𝐻𝑧) 

It is most common to do noise evaluations using a noise power density, in Watts per Hz.  

By setting 𝐵 = 1 Hz we get: 

For 𝐵 = 1 Hz, Noise Power = 𝑘𝑇0 

By Thevinin, Noise Power = 1.38 × 10−23 × 290 = 4 × 10−23 W 

 Noise floor below the carrier for zero dBm output is given by: 

𝐿(𝜔) = 10𝑙𝑜𝑔 (
𝑣𝑛

2 𝑅⁄

1𝑚𝑊
)  = −173.97𝑑𝐵𝑚 𝑜𝑟 𝑎𝑏𝑜𝑢𝑡 − 174𝑑𝐵𝑚  

 In order to reduce this noise, the only option is to lower the temperature, since noise power is 

directly proportional to temperature. 

 The Johnson noise sets the theoretical noise floor.  

 The available noise power does not depend on the value of resistor but it is a function of 

temperature T. The noise temperature can thus be used as a quantity to describe the noise behavior 

of a general lossy one-port network. 
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 For high frequencies and/or low temperature a quantum mechanical correction factor has to be 

incorporated for the validation of equation. This correction term results from Planck’s radiation 

law, which applies to blackbody radiation.  

𝑃𝑎𝑣 = 𝑘𝑇. 𝐵 ∙ 𝑝(𝑓, 𝑇), 𝑤𝑖𝑡ℎ 𝑝(𝑓, 𝑇) = [
ℎ𝑓

𝑘𝑇
(𝑒(

ℎ𝑓

𝑘𝑇
) − 1)⁄ ]  

 𝑤ℎ𝑒𝑟𝑒 ℎ = 6.626. 10−34𝐽 − 𝑠, 𝑃𝑙𝑎𝑛𝑐𝑘′𝑠 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (Planck’s Radiation Noise) 

 

Schottky/Shot noise  

The Schottky noise occurs in conducting PN junctions (semiconductor devices) where electrons are freely 

moving. The root mean square (RMS) noise current in 1 Hz bandwidth given by 

𝜄𝑛
2̅ = 2 × 𝑞 × 𝐼𝑑𝑐 𝑃 = 𝑖𝑛

2 × 𝑅𝐿 

Where, 𝑞 is the charge of the electron, P is the noise power, and 𝐼𝑑𝑐 is the dc bias current, 𝑅𝐿 is the 

termination load (can be complex). 

Since the origin of this noise generated is totally different, they are independent of each other. 

Flicker noise  

The electrical properties of surfaces or boundary layers are influenced energetically by states, which are 

subject to statistical fluctuations and therefore, lead to the flicker noise or 1/𝑓 noise for the current flow. 

1/𝑓 noise is observable at low frequencies and generally decreases with increasing frequency 𝑓 according 

to the 1/𝑓-law until it will be covered by frequency independent mechanism, like thermal noise or shot 

noise. 

Example: The noise for a conducting diode is bias dependent and is expressed in terms of 𝐴𝐹 and 𝐾𝐹. 

Transit time and Recombination Noise  

When the transit time of the carriers crossing the potential barrier is comparable to the periodic signal, 

some carriers diffuse back and this causes noise. This is really seen in the collector area of NPN transistor. 

The electron and hole movements are responsible for this noise. The physics for this noise has not been 

fully established. 

 

Avalanche Noise  

When a reverse bias is applied to semiconductor junction, the normally small depletion region expands 

rapidly. 
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The free holes and electrons then collide with the atoms in depletion region, thus ionizing them and 

produce spiked current called the avalanche current. 

The spectral density of avalanche noise is mostly flat. At higher frequencies the junction capacitor with 

lead inductance acts as a low-pass filter. 

Zener diodes are used as voltage reference sources and the avalanche noise needs to be reduced by big 

bypass capacitors. 

⟨𝑖𝐷𝑛
2 ⟩𝐴𝐶 = 2𝑞𝐼𝑑𝑐𝐵 + 𝐾𝑓

𝐼𝐷𝐶
𝐴𝑓

𝑓
𝐵 

𝐴𝑓 Generally is in the range of 1 to 3 (dimensionless quantity) and is a bias dependent curve fitting 

term, typically 2. 

The 𝐾𝑓 value is ranging from 1E−12 to1E−6, and defines the flicker corner frequency. 

 

 Transistor Types 

Bipolar Transistors 

The bipolar transistor has been known and used for many decades.  Many scientists have explained its 

behavior, and probably the best analysis in the DC/RF area is summarized in [29].  This summary is based 

largely on the Infineon transistor BFP520 as an example, but is applicable to other transistors also.  
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The first thing we need to do is look at the model used to calculate the DC and RF performance of a 

microwave transistor.  There are subtle differences between the standard SPICE implementation and the 

one suited for higher frequencies.  Figure 3-1 shows a modification that was necessary for greater accuracy 

by introducing an additional base-spreading resistor, Rb2. 
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. 

 
Field-Effect Transistors 

For RF applications, there are three types of transistors which can be used.  The first is a junction FET, 

which have been shown to be useful up to 1 GHz at most.  Their fairly high input capacitance of about 

1pF and large feedback capacitance of about 0.1pF limits their use.  They have been mentioned here only 

for completeness.  The other two FETs of importance are members of the GaAs FET family and the 

BiCMOS transistors.  Recent advances in technology have push the BiCMOS process close to 1009 GHz 

if the BiCMOS transistor is built on SiGe technology.   
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GaAs FETs (MESFET) 

 
 

 

For the purpose of modeling GaAs FETs, there is a large number of models available, and the list is longer 

if company or university internal models are added.  The following models are popular with CAD tools. 

 Chalmers (Angelov) Model  

 Modified Materka-Kacprzak Model (low noise) 

 Physics-Based MESFET Model 

  

Their properties and different model equations can be found in the CAD user’s manual.  As an example, 

the Ansoft Designer’s reference manual gives all the details and references on how the model was 

implemented.  It is difficult to obtain a reliable parameter extractor for the models.  Probably, the most 

popular model for commercial application is the Angelov model.  The model for which good parameters 

can be extracted with reasonable effort is the Materka model.    It requires a DC/IV curve tracer and a 

network analyzer which operates up to 84 GHz.   
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NMOS MOSFET 

 
 

 

MOS Model Level 3 Example: 

The following model shown in Figure 3-21 is the popular but simple MOSFET model and has been 

implemented in this configuration and in most of the simulators (ADS from Agilent, Designer from 

Ansoft, and Microwave Office  from AWR to name a few).  Addressing the model Level 3, here are the 

parameters extracted for the LDMOS device which works up to several GHz and was used for a 2 GHz 

oscillator. 

 
L = 0.12um W = 0.15mm CBD = 0.863E-12 CGD0 = 166E-12 CGS0 = 246E-12 GAMA = 0.211 + IS = 

6.53E-16 KAPA = 0.809 MJ = 0.536 NSUB = 1E15 PB = 0.71 PBSW = 0.71 + PHI = 0.579 RD = 39 RS 

= 0.1 THET = 0.588 TOX = 4E-8 U0 = 835 VMAX = 3.38E5 + VT0 = 2.78 XQC = 0.41 

 

The data provided above was supplied for a LDMOS device.   
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For the RFIC application, the BISIM Model 3V3 is the model of choice.  Figures 3-23 and 3-24 show the 

MOSFET model representation. 
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While for the purpose of more insight this presentation uses detailed equivalent circuits and parameter the 

engineer in realty used either a characterized transistor or a foundry for the design. 

While the transistor models are quite mature the real problem lies in the quality of the parameter extraction 

or likewise in the accuracy of the physics based models. 

For the purpose of this presentation some easy to understand and simplified models are used, the refined 

models do not make the accuracy infinitely better. 
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 Linear Approach to the Calculation of Oscillator Phase Noise 

 

In transmitters, oscillator noise can result in adjacent-channel interference and modulation errors; in 

receivers, oscillator noise can result in demodulation errors, and degraded sensitivity and dynamic range. 

The specification, calculation and reduction of oscillator noise is therefore of great importance in wireless 

system design. 
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The definition of phase noise was first given by E. J. Baghdady, R. N. Lincoln and B. D. Nelin, "Short-

term Frequency Stability: Characterization Theory, and Measurement," in Short-Term Frequency 

Stability, NASA SP-80, 1965, pp. 65-87. 

 

 

 

 

 

Since an oscillator can be viewed as an amplifier with feedback (Figure 5-66), it is helpful to examine the 

phase noise added to an amplifier that has a noise figure F. With F defined as 

 

 
  GkTB

N
GN

N
NS
NSF out

in

out

out

in

/
/

       (5-97) 

 

FGkTBN out         (5-98) 

 

kTBN in          (5-99) 

 

where Nin is the total input noise power to a noise-free amplifier. The input phase noise in a 1-Hz 

bandwidth at any frequency f0 + fm from the carrier produces a phase deviation given by (Figure 5-67) 

 

avsavsRMS

nRMS1
peak P

fKT
V
V

        (5-100) 

 

avs
1RMS 2

1
P
FkT

         (5-101) 
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Since a correlated random phase-noise relation exists at f0  fm, the total phase deviation becomes 

 

avsRMStotal / PFkT        (5-102) 

 

The spectral density of phase noise becomes 

 

  avs
2
RMS / PFkTBfS m         (5-103) 

 

where B = 1 for a 1-Hz bandwidth. Using 
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dBm/Hz 174kTB   (B = 1)      (5-104) 

 

allows a calculation of the spectral density of phase noise that is far removed from the carrier (that is, at 

large values of fm). This noise is the theoretical noise floor of the amplifier. For example, an amplifier with 

+10 dBm power at the input and a noise figure of 6 dB gives 

 

  dBm 178dBm 10dB 6 dBm 174  cm ffS    (5-105) 

 

Only if POUT is > 0 dBm can we expect  (signal-to-noise ratio) to be greater than 174 dBc/Hz (1-Hz 

bandwidth.) For a modulation frequency close to the carrier, S (fm) shows a flicker or 1/f component, 

which is empirically described by the corner frequency fc. The phase noise can be modeled by a noise-free 

amplifier and a phase modulator at the input as shown in Figure 5-68. 

 

 

 

 

 

 

 

 

The purity of the signal is degraded by the flicker noise at frequencies close to the carrier. The spectral 

phase noise can be described by 

 

  











m

c
m f

f
P

FkTBfS 1
avs

   (B = 1)     (5-106) 
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No AM-to-PM conversion is considered in this equation. The oscillator may be modeled as an amplifier 

with feedback as shown in Figure 5-69. The phase noise at the input of the amplifier is affected by the 

bandwidth of the resonator in the oscillator circuit in the following way. The tank circuit or bandpass 

resonator has a low-pass transfer function 

 

 
 0/21

1



mL

m Qj
L


        (5-107) 

where 

2/2/0 BQL          (5-108) 

is the half-bandwidth of the resonator. These equations describe the amplitude response of the bandpass 

resonator; the phase noise is transferred attenuated through the resonator up to the half-bandwidth. 

 

 

 

 

 

 

 

 

 

 

 

The closed-loop response of the phase feedback loop is given by 
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   m
mL

m f
Qj

f in
0

out 2
1 




 










       (5-109) 

 

The power transfer becomes the phase spectral density is given by 

   m
Lm

m fS
Q
f

f
fS in

2
0

2out 2
11 























      (5-110) 

 

where S in was given by Eq. (5-106). Finally, (fm) is 

    (5-111) 

 

This equation describes the phase noise at the output of the amplifier (flicker corner frequency and AM-

to-PM conversion are not considered). The phase perturbation Sθin at the input of the amplifier is enhanced 

by the positive phase feedback within the half-bandwidth of the resonator, f0/2QL. 
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Depending on the relation between fc and f0/2QL, there are two cases of interest, as shown in Figure 5-70. 

For the low-Q case, the spectral phase noise is unaffected by the Q of the resonator, but the (fm) spectral 

density will show a 1/f 3 and 1/f 2 dependence close to the carrier. For the high-Q case, a region of 1/f 3 

and 1/f should be observed near the carrier. Substituting Eq. (5-106) in (5-111) gives an overall noise of 

 

 (5-112) 

 

Examining Eq. (5-112) gives the four major causes of oscillator noise: the up-converted 1/f noise or flicker 

FM noise, the thermal FM noise, the flicker phase noise, and the thermal noise floor, respectively. 

 

QL (loaded Q) can be expressed as 
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power dissipated total
power reactive

sigresintotaldiss,





PPP

W
P

WQ eoeo
L



   (5-113) 

 

where We is the reactive energy stored in L and C, 

 
2

2
1 CVWe           (5-114) 

 

unl
res Q

WP eo          (5-115) 

 

(5-116) 

 

 

 

 

 

 

 

 

 

 



 
 

27 
 

The following examples refer to bipolar transistors ONLY 

 

 
 

 

 

This equation is extremely significant because it covers most of the causes of phase noise in oscillators. 

[AM-to-PM conversion must be added; see (5-56).]  

The basic equation (Scherer, Rohde’s Modified Leeson's Equation) needed to calculate the phase noise is 

found in The Design of Modern Microwave Oscillators for Wireless Applications: Theory and 

Optimization [9]. 

£(𝑓𝑚) = 10log {[1 +
𝑓0

2

[2𝑓𝑚𝑄0𝑚(1 − 𝑚)]2
] (1 +

𝑓𝑐

𝑓𝑚
)

𝐹𝑘𝑇

2𝑃0
+

2𝑘𝑇𝑅𝐾0
2

𝑓𝑚
2

} 
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where £(𝑓𝑚), 𝑓𝑚, 𝑓0, 𝑓𝑐 , 𝑄𝐿 , 𝑄0, 𝐹, 𝑘, 𝑇, 𝑃𝑜 , 𝑅, 𝐾0 and 𝑚 are the ratio of the sideband power in a 1 Hz 

bandwidth at 𝑓𝑚 to total power in dB , offset frequency, flicker corner frequency, loaded Q , unloaded Q, 

noise factor, Boltzmann's constant, temperature in degree Kelvin, average output power, equivalent noise 

resistance of tuning diode, voltage gain and ratio of the loaded and unloaded 𝑄, respectively. 

From (1.1), the minimum phase noise can be found by differentiating Equation (1.1b) and equating to zero 

as ∂

∂𝑚
[£(𝑓𝑚)]𝑚=𝑚opt 

= 0 

 £(𝑓𝑚) =
𝑑

𝑑𝑚
{10log {[1 +

𝑓0
2

[2𝑓𝑚𝑄0𝑚(1 − 𝑚)]2
] (1 +

𝑓𝑐

𝑓𝑚
)

𝐹𝑘𝑇

2𝑃0
+

2𝑘𝑇𝑅𝐾0
2

𝑓𝑚
2

}}

𝑚≠1

= 0

 → 𝑚opt ≅ 0.5

 

 

Figure 1-2 shows the relative phase noise of the typical oscillator [9, pp.333] versus the ratio of loaded 

and unloaded 𝑄 of the resonator for noise factor 𝐹1 and 𝐹2, (𝐹1 > 𝐹2). 
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The collector current plotted in Figure 20 becomes more narrow as the normalized drive level x moves 

towards x = 20.  At the same time, the base-emitter voltage swing increases.  This is plotted in Figure 6-

21.   
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Here is a brief introduction to the definition of X, in a way the duty cycle. The voltage )(tv across the 

base-emitter junction consists of a DC component and a driven signal voltage )cos(1 wtV .  It can be 

expressed as  

 

)cos()( 1 wtVVtv dc       

 

As the driven voltage )cos(1 wtV increases and develops enough amplitude across the base-emitter 

junction, the resulting current is a periodic series of pulses whose amplitude depends on the nonlinear 

characteristics of the device and is given as 

 

kT
tqv

se eIti
)(

)(         

 

kT
wtqV

kT
qV

se eeIti
dc )cos(1

)(       

 

)cos()( wtxkT
qV

se eeIti
dc

       

 

assuming Ic  Ie (>10) 

 

kT
qV

qkT
Vx 11

)/(
       

 

)(tie is the emitter current and x  is the drive level which is normalized to qkT / . 
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OSCILLATOR PHASE NOISE 

Repeat: This equation does not take into consideration the conducting angle, because it is in the 

linear domain. 
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The Equation above explain the phase noise degradation (as compared to the fixed frequency LC oscillator 

due to the oscillator voltage gain K
0
 associated with the tuning diode network as described by Rohde). 

The reason for noise degradation is due to the increased tuning sensitivity of the varactor diode tuning 

network.  

 

The Leeson phase noise equation is modified to accommodate the tuning diode noise contribution 
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RECENT RESULTS AT PSI 

 

The PSI 'SBO' series are compact, sapphire oscillators operating near room temperature, while the 

'SLCO' is a 19" rack instrument. Since the first SLCOs were produced in 1996, the application-

demanded requirements for temperature range, phase and amplitude noise performance, vibration 

sensitivity, and reliability have become more stringent. 

Phase Noise Results 

As mentioned above, the phase noise has shown steady improvement over the last few years, and Figure 

12 shows the current level of performance. 
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Amplitude Noise Results 

With phase noise at these low levels, amplitude (AM) noise can no longer be ignored. In fact, poor AM 

noise can readily degrade phase noise performance, particularly as temperature varies (an oscillator 

tuned for minimum AM-to-PM conversion at room temperature may well suffer at operating 

temperature extremes). At PSI, we have tested various amplifier designs and developed low noise power 

supplies to minimize oscillator AM noise, and Figure 13 shows the current 'SBO' performance. 

 

 

 

AM noise is −154dBc/Hz at 1 kHz offset, with a 1/f characteristic through to 50 kHz , where the effect 

of resonator filtering is visible. The measurement was done using cross correlation of the signals from 

two AM-sensitive mixers, to achieve a low measurement noise floor. The apparent steps in the data are 

due to limited averaging in the cross-correlation method (a higher number of averages was taken at 

higher frequencies). 
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  

 

 

Popular oscillator circuits: 

Most high performance oscillators are actually based on the Emitter Follower principle called Colpitts 

oscillator 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This equation is the linear Leeson equation, with the pushing effect omitted and the flicker term added by 

Dieter Scherer (Hewlett Packard, about 1975).  

Phase noise is a dimensionless number, and expressed in dBc/Hz, measured at an offset of f (fm) from 

the carrier relative to the RF output power. At 0 dBm output, the ideal phase noise level far off the carrier 

is -174dB (T0= 300 Kelvin) 

 

 

 Typical Microwave Oscillator (Colpitts Oscillator) 

A typical linear oscillator phase noise 
model (block diagram) Leeson 
Model 

The resulting phase noise in linear 
terms can be calculated as 
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 Microwave oscillators are based on the negative resistance principle to compensate for the losses. 

 Maximum frequency of oscillation can be determined from linear analysis for start-up conditions, 

but not necessarily for sustaining oscillation (large signal condition will reduce the gain and shift 

the frequency). 

 Linear analysis is unreliable to determine resonance frequency and other dynamic parameters, 

beware of parasitics. 
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The Calculation of the Oscillating Condition Considering Parasitics of the Colpitts oscillator 

In the practical case, the device parasitics and loss resistance of the resonator will play an important role 

in the oscillator design. Figure 6-2 incorporates the base lead-inductance Lp and the package-capacitance 

Cp.  

 Designing an Oscillator 
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It must be noted that part of the intrinsic transistor the Base-Collector capacitance is responsible for the 

Miller effect, and the Collector Emitter capacitance (Both are depletion capacitances), are non-linearly 

dependent on the collector voltage. 

 
 

 

The input impedance is  
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Because the real and imaginary part of Z11 contain Y21 which is both nonlinear and time dependent, 

The flicker and other noisy parts will be up converted to the carrier frequency, A high Q doesn’t 

improve the noise unless the resonator also acts like a bandpass filter. 
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where Lp is the base-lead inductance of the bipolar transistor and Cp is base-emitter package capacitance.  

All further circuits are based on this model. 
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From the expression above, it is obvious that the base lead-inductance makes the input capacitance appear 

larger and the negative resistance appear smaller. The equivalent negative resistance and capacitance can 

be defined as 
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where  

 

NR :     Noisy negative resistance without lead inductance and package      capacitance. 

NEQR :  Negative resistance with base-lead inductance and package capacitance. 

EQC :    Equivalent capacitance with base-lead inductance and package capacitance 

At resonance: 
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The expression above can be rewritten in terms of a determinant as 

 

Det 
)]1()([)]1([

]))(1[(]1([
22

21
2

21
2

2
2121

22
21

222

pPC

PPpC

LYCCCLCC
YLCCCLYLCLC








 = 0  (6-9) 

For Lp  0 

 

 ][
][

212121

2112
0

CCC

CC

CCCCCCCCCCCCL
CCCCCC





   (6-33) 

 















CC

C

CCCCCC
CCC

CL
2121

21
0

1


    (6-34) 

 

CC is a coupling capacitor used for separating the bias circuit, and its value is normally small, but similar 

to C1 and C2, typically 0.2pF to 2pF.   

 

Rewriting the polynomial equation as ( CC  ) 
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 Tuning Diode Noise Contribution 

 

Now including a tuning diode and explaining and its noise contribution  

 (For the moment assuming it introduces no side effect). 

 The circuit assumes, C3>>C2. Both the Base Collector and the Collector to Emitter capacitance will act 

as a tuning diode. 

This tuning diode itself generates a noise voltage and modulates its capacitance by a slight amount, and 

therefore modulates the frequency of the oscillator by minute amounts.  The following calculates the phase 

noise generated from this mechanism, which needs to be added to the phase noise calculated above. 

 

It is possible to define an equivalent noise Raeq that, inserted in Nyquist’s equation,  

 

     fRkTV aeqon  4      (7-21) 

where kTo = 4.2  10-21 at 300 K, R is the equivalent noise resistor, f is the bandwidth, and determines 

an open noise voltage across the tuning diode.  Practical values of Raeq for carefully selected tuning diodes 

are in the vicinity of 100, or higher.  If we now determine the voltage ,100102.44 21  

nV  the 

resulting voltage value is 1.265  10-9 V .Hz  
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This noise voltage generated from the tuning diode is now multiplied with the VCO gain, resulting in the 

rms frequency deviation: 

 

)10265.1()( 9VKf orms
 in 1 Hz bandwidth   (7-22) 

 

In order to translate this into the equivalent peak phase deviation, 
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2 9 rad

f
K

m

o
d

 in 1 Hz bandwidth   (7-23) 

 

or for a typical oscillator gain of 10 MHz/V,  

 

m
d f

00179.0
  rad in 1 Hz bandwidth   (7-24) 

 

For fm= 25 kHz (typical spacing for adjacent channel measurements for FM mobile radios), the d = 7.17 

 10-8.  This can be converted into the SSB signal-to-noise ratio 

 

L  2
log20)( 10

c
mf 


       

(7-25) 

= 149 dBc/Hz       

 

Figure 7-6 shows a plot with an oscillator sensitivity of 10 kHz/V, 10 MHz/V, and 100 MHz/V.  The 

center frequency is 2.4 GHz.  The lowest curve is the contribution of the Leeson equation.  The second 

curve shows the beginning of the noise contribution from the diode, and the third curve shows that at this 

tuning sensitivity, the noise from the tuning diode by itself dominates as it modulates the VCO.  This is 

valid regardless of the Q.  This effect is called modulation noise (AM-to-PM conversion), while the Leeson 

equation deals with the conversion noise.   
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If we combine the Leeson formula with the tuning diode contribution, the following equation allows us to 

calculate the noise of the oscillator completely.  
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where  

 

L  (fm) = ratio of sideband power in a 1 Hz bandwidth at fm to total power in dB 

fm = frequency offset 

f0 = center frequency 

fc = flicker frequency 

QL = loaded Q of the tuned circuit 

F = noise factor 
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kT = 4.1  1021 at 300 K0 (room temperature) 

Psav = average power at oscillator output 

R = equivalent noise resistance of tuning diode (typically 50  - 10 k) 

Ko = oscillator voltage gain  

 

The limitation of this equation is that the loaded Q in most cases has to be estimated and the same applies 

to the noise factor.  The microwave harmonic-balance simulator, which is based on the noise modulation 

theory (published by Rizzoli), automatically calculates the loaded Q and the resulting noise figure as well 

as the output power [73].  The following equations, based on this equivalent circuit, are the exact values 

for Psav, QL, and F which are needed for the Leeson equation.  This approach shown here is novel.  It 

calculates the output power based on the Equations (8-66 to 8-76).  The factor of 1000 is needed since the 

result is expressed in dBm and a function of n and C1. 

 

As a reminder this figure is repeated: The output coupling of the energy is done at the tapped inductor. As 

the inductor is part of the tuned circuit, the selectivity of the tuned circuit reduces the far out noise. This 

type of circuit has much better phase noise, than the output at the collector of a semi-isolated Colpitts 

circuit. 
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In frequency synthesizers, we have no use for LC oscillators without a tuning diode, but it may still be of 

interest to analyze the low-noise fixed-tuned LC oscillator first and later make both elements, inductor 

and capacitor, variable. 
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0.7 = high current saturation voltage, Vce collector emitter voltage <Vcc 

 

To calculate the loaded QL, we have to consider the unloaded Q0 and the loading effect of the transistor.  

There we have to consider the influence of Y21
+.  The inverse of this is responsible for the loading and 

reduction of the Q. 
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Based on Figure 8-7, which also shows the transformation of the loading of the differential emitter 

impedance (resistance), we can also calculate the noise factor of the transistor under large-signal 

conditions.  Considering Y21
+, this noise calculation, while itself uses a totally new approach, is based on 

the general noise calculations such as the one shown by Hawkins [117] and Hsu and Snapp [118].  An 

equivalent procedure can be found for FET’s rather than bipolar transistors. 

 

 Designing an Oscillator based on Linear S-Parameters  

It may be interesting for readers to see how an oscillator can be analyzed using S-parameters. It should be 

noted that this method is based on linear approximations and works for practically all microwave oscillator 

designs [6, 28, pg. 741]. The equivalent criteria of the negative resistance can be calculated in the form of 

S-parameters. The detailed definitions of S-parameters can be found in [31]. This negative resistance will 

cause oscillations if the following conditions are satisfied. Assume that the oscillation condition is satisfied 

at port 1 and is given by 
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Thus 
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Comparing equations (9) and (12), we find that 

22

1
GS
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  (14) 

where, S11 and S22 are the input and output reflection coefficients, respectively 

The discussion above means that the oscillation condition is also satisfied at port 2; which proves the 

simultaneous oscillation condition at both ports. Thus, if either port is oscillating the other port must be 

oscillating as well. A load may appear at either or both ports, but normally the load is in L , the output 

termination. 

It is helpful to use the common-source based amplifier to compute the oscillator output power. For 

oscillators, the objective is to maximize  out inP P  of the amplifier, which is the useful power to the load. 

An empirical expression for the common-source amplifier output power found by Johnson [29] is 

in
out sat
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1 exp GPP P
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where Psat is the saturated output power of the amplifier and G is the tuned small-signal common-source 

transducer gain of the amplifier, which is identical to 2
21S . Since the objective is to maximize  out inP P

, where Pout and Pin are the output and input power of the amplifier, 

 out in 0d P P   (16) 

out

in

1P
P




  (17) 

out in
exp

in sat

1P GPG
P P


  

  (18) 

in

sat

exp GP G
P



 (19) 

in

sat

lnP G
P G



 (20) 

At the maximum value of  out inP P , the amplifier output is 

out sat
11P P
G

 
  

   (21) 

and the maximum oscillator output power is 

 osc out inP P P   (22) 

 

1 ln1sat
GP

G G
 

   
   (23) 

Thus, the maximum oscillator output power can be predicted from the common-source amplifier saturated 

output power and the small signal common source transducer gain G. For high oscillator output power, 

high (loop) gain is of importance. Another definition of gain that is useful for large-signal amplifier or 

oscillator design is the maximum efficient gain, defined by 

out in
ME

in

P PG
P




 (24) 

For maximum oscillator power the maximum efficient gain from (20) and (21) is 
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MEmax
1

ln
GG

G


  (25) The RF gain GMEmax is a considerably smaller value compared to G, the small-

signal gain [7-12]. 

Designing oscillators based on S-parameters in a linear mode has been quoted by many authors using first 

approximation for large signals, as shown in [8]. The problem with this published approach is that it uses 

a GaAs FET, where only the transconductance gm has a major influence. S11 changes very little under large 

signal conditions, as does S22. Reliable large signal S-parameters for bipolar transistors and FETs are 

difficult to get. Under steady state condition Y21* is approximately Re(Y21)/π. 

 

CONDITIONS FOR OSCILLATIONS 

 

 
 

 

Real (Z11) must be slightly more negative than the loss resistance in the circuit for oscillation to start. 

The resulting dc shift in the transistor will then provide the amplitude stabilization as gm will be reduced.   
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Next we need to look at the large signal condition which will affect Y11 and Y21.The best way to get 

the data is to measure the parameters. At microwave frequencies it is convenient to do so in a 50 Ohm 

system and then convert them to Y parameter 

 

 

 

 Definition:  RF voltages/currents are of similar magnitude as the DC values.   

 Test points were Vc  = 2V, Ic = 20mA. 

 The transistor behaves differently under large signal conditions. 

 Large signal parameters can be obtained from simulation using SPICE parameters, calculating 

the Bessel functions of the currents of the intrinsic transistor and adding the parasitics and 

measurements. 

 

  
 

 

Typical measurement setup for evaluation of large signal parameters (R&S vector analyzer and the test 

fixture for the transistor of choice), Agilent now calls this X Parameters 

 

The bias, drive level, and frequency dependent S parameters are then obtained for practical use 

 

 Large signal Operation of Oscillators 

This Figure shows the R&S VNA and the test fixture for the transistor of choice                   
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Measured large-signal S
11

 of the BFP520 Measured large-signal S
12

 of the BFP520 

Measured large-signal S
21

 of the BFP520 Measured large-signal S
22

 of the BFP520 
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Oscillator Design Based on the Measured Large-Signal S-parameters 

A) Parallel Resonant (Colpitts Oscillator) 

Figure 1 shows the standard Colpitts oscillator using large-signal S-parameters.  This example is of 

particular interest because it requires an inductor instead of the familiar capacitor, C2, between base and 

emitter. 

 
 

 

The measured large-signal Y-parameter data (Ic=20mA, Vce=2V), see above, @ 3000MHz are:  

 

mSjjBGY )96.842.11(111111      (A-1) 

 

mSjjBGY )64.19635.4(212121      (A-2) 

 

mSjjBGY 5643.109.433(121212      (A-3) 

 

mSjjBGY )10.941.4(222222      (A-4) 
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The optimum values of feedback element are calculated from the given expression of *
1B and *

2B are  
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The optimum values of the real and imaginary part of the output admittance are  

  

][ ***
outoutout jBGY       (A-13) 
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where 
*

outG and 
*

outB  is given as 
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Figure A-2 shows the simulated response of the oscillator circuit having resonance at 3120 MHz or 5% 

error. The little variation in resonant frequency may be due to the frequency dependent packaged 

parameters, but it is a good starting value for tuning and optimization for the best phase noise and output 

power. The best phase noise at a given power output is basically dependent upon the ratio and absolute 

value of the feedback capacitors, which in turn depends upon the optimum drive-level.  

 

0)(),(   Lout ZIZ     (A-20) 

 

)()( 3  ZZ L       (A-21) 

Negative current, 

responsible for 

negative resistance 

Reactive current, 

responsible for 

resonance at the 

zero crossing 
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Where I is the load current amplitude and w is the resonance frequency. outZ  is current and frequency 

dependent output impedance, whereas LZ is only function of frequency.   

 

Now the evaluation  

The bias condition of the transistor is 

 

 
 

Good news, the calculated feedback circuit makes the oscillator to oscillate, 
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The loaded Q of the printed resonator was 200. Now evaluating the influence of the values of the 

feedback capacitors gives an interesting result. 

 

 

 

 

Increasing the output power strongly reduces the phase noise! 

 

The important message that can be derived from this calculation is the fact that the parasitics now dominate 

the design.  The negative resistance which used to be proportional to 1/2 now is 1/4.  The rule of thumb 

is to use a large device for lower frequencies and operate it at medium DC currents.  This in the millimeter 

wave area would be fatal.  The large device would have excessive parasitic elements such as inductors 

and capacitors and the optimum design is no longer possible since the parasitics would be larger than the 

values required for optimum performance.  These parasitics are the major reason why at millimeter wave 

and wide tuning ranges the phase noise is not as good as what a narrowband Colpitts oscillator would 

provide.  

 

The oscillator operates in a reasonable linear mode so the load line has a minimum surface area 

 

Modeling the actual complex layout is much more relevant than a standard circuit diagram 

 

B) Series Feedback Oscillator: Applicable to YIG Oscillators 
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The steady-state oscillation condition for series feedback configuration can be expressed as 

 

0)(),(   Lout ZIZ     (A-20) 

 

)()( 3  ZZ L       (A-21) 

 

where I is the load current amplitude and w is the resonance frequency. outZ  is current and frequency 

dependent output impedance, where as LZ is only function of frequency.   

 

),(),(),(  IjXIRIZ outoutout      (A-22) 

 

)()()(  LLL jXRZ       (A-23) 

 

 

 

The expression of output impedance, outZ can be written as 
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]][[][

2111

221212
2223 ZZZ

ZZZZZZZZout
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where Zij (i,j=1,2) is Z-parameters of hybrid transistor model and can be written as 

 

2,1,, ][  jijiijji jXRZ     (A-25) 
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According to optimum criterion, the negative real part of the output impedance outZ  has to be maximized 

and the possible optimal values of feedback reactance under which the negative value outR  is maximized 

by setting 

                                                                                                                                                                                                                                                                                                                 

0
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The optimal values *
1X and *

2X , based on above condition, can be expressed in terms of a 2-port parameter 

of the active device (BJT/FET) as [177, 178]: 
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By substituting values of *
1X and *

2X  into above equation, the optimal real and imaginary parts of the 

output impedance *
outZ  can be expressed as 
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thus, in the steady-state operation mode of the oscillator, amplitude and phase balance conditions can be 

written as 

 

0*  Lout RR       (A-34) 

 

0**  Lout XX       (A-35) 

The output power of the oscillator can be expressed in terms of load current and load impedance as 
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where I  and V is the corresponding load current and voltage across the output. 
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The expression of the phase noise for the series feedback oscillator, following the approach for the Colpitts 

oscillator, is  
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For large value of Ql, 
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The important message that can be derived from this calculation is the fact that the parasitics now dominate 

the design.  The negative resistance which used to be proportional to 1/2 now is 1/4.  The rule of thumb 

is to use a large device for lower frequencies and operate it at medium DC currents.  This in the 

millimeterwave area would be fatal.  The large device would have excessive parasitic elements such as 

inductors and capacitors and the optimum design is no longer possible since the parasitics would be larger 

than the values required for optimum performance.  These parasitics are the major reason why at 

millimeterwave and wide tuning ranges the phase noise is not as good as what a narrowband Colpitts 

oscillator would provide.  

 

Example: 3000 MHz YIG Oscillator 

A 3000MHz oscillator is designed based on the above shown analytical series feedback approach and is 

also validated with the simulated results. Figure A-3 shows the series feedback oscillator. 
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Large signal Z-parameters measured data (Ic=20mA, Vce=2V) @ 3000 MHz are given as  
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pFCX out 2.031176.259 3
*      (A-49) 

 

The simulated response of the oscillator circuit, having resonance at 2980MHz or 1% error, is a good 

starting value for tuning and optimization for optimum phase noise and output power. The best phase 

noise at a given power output is basically dependent upon the ratio and absolute value of the feedback 

capacitor, which in turn depends upon the optimum drive-level. The detailed analysis for designing the 

best phase noise, based on a unified approach, is discussed in the next section.  Figure A-4 shows the real 

and imaginary currents for oscillating conditions for optimum output power.  In this case, the operating Q 

is very low, as can be seen from the shallow curve at which the imaginary current crosses the zero line, 

while the real current is still negative.  To optimize this circuit for phase noise, the imaginary curve should 

go through the zero line at the point of steepest ascent, while maintaining a negative real current. The low 

Q resonator guarantees that the most output power is available, and the resonator is heavily loaded. 
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 Classical Linear Two-Port Oscillator Design 

In many cases in old publications and even today a first approximation is made for two port oscillators 

using the published small signal S parameters. This may be good for getting oscillation started but may 

not be correct for predicting sustaining oscillation 

 

This older, unreliable but frequently common method for designing oscillators is to resonate the input port 

with a passive high-Q circuit at the desired frequency of resonance. This only works if the transistor has 

access gain! It will be shown that if this is achieved with a load connected on the output port, the transistor 

is oscillating at both ports and is thus delivering power to the load port. The oscillator may be considered 

a two-port structure, where M3 is the lossless resonating port and M4 provides lossless matching such that 

all of the external RF power is delivered to the load. The resonating network has been described. 

Nominally, only parasitic resistance is present at the resonating port, since a high-Q resonance is desirable 

for minimizing oscillator noise. It is possible to have loads at both the input and the output ports if such 

an application occurs, since the oscillator is oscillating at both ports simultaneously. 
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Note: Using the hopefully high Q tuned circuit also as a filter gives better far out phase noise than the 

more common method taking  like the energy from the collector if the circuit is based on the Colpitts 

design. 

The simultaneous oscillation condition is proved as follows. Assume that the oscillation condition is 

satisfied at port 1: 

'
111/ GS    (4-218) 
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By expanding Eq. (4-220), we find 
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Comparing Eqs. (4-221) and (4-223), we find 

'
221/ LS    (4-224) 

which means that the oscillation condition is also satisfied at port 2; this completes the proof. Thus, if 

either port is oscillating, the other port must be oscillating as well. A load may appear at either or both 
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ports, but normally the load is in L , the output termination. This result can be generalized to an n-port 

oscillator by showing that the oscillator is simultaneously oscillating at each port: 
' ' ' '

1 11 2 22 3 33 n nnS S S S         (4-225) 

Before concluding this section on two-port oscillator design, the buffered oscillator shown in Figure 4-

166 must be considered. This design approach is used to provide the following: 

A reduction in loading-pulling, which is the change in oscillator frequency when the load reflection 

coefficient changes. 

A load impedance that is more suitable to wideband applications, Eq. (4-198). 

A higher output power from a working design, although the higher output power can also be achieved by 

using a larger oscillator transistor. 

Buffered oscillator designs are quite common in wideband YIG applications, where changes in the load 

impedance must not change the generator frequency. 

 

 

Two-port oscillator design may be summarized as follows: 

Select a transistor with sufficient gain and output power capability for the frequency of operation. This 

may be based on oscillator data sheets, amplifier performance, or S-parameter calculation. 

Select a topology that gives k < 1 at the operating frequency. Add feedback if k < 1 has not been achieved. 

Select an output load matching circuit that gives '
11 1S   over the desired frequency range. In the simplest 

case this could be a 50- load. 

Resonate the input port with a lossless termination so that '
11 1GS  . The value of '

22S  greater than unity 

with the input properly resonated. 

In all cases, the transistor delivers power to a load and the input of the transistor. Practical considerations 

of readability and dc biasing will determine the best design. 

For both bipolar and FET oscillators, a common topology is common-base or common-gate, since a 

common-lead inductance can be used to raise S22 to a large value, usually greater than unity even with a 

50- generator resistor. However, it is not necessary for the transistor S22 to be greater than unity, since 



 
 

66 
 

the 50- generator is not present in the oscillator design. The requirement for oscillation is k < 1; then 

resonating the input with a lossless termination will provide that '
11 1S  . 

A simple example will clarify the design procedure. A common-base bipolar transistor (HP2001) was 

selected to design a fixed-tuned oscillator at 2 GHz. The common-base S parameters and stability factor 

are given in Table 4-16. Using the load circuit in Figure 4-167, we see that the reflection coefficients are 

'
11

0.62 30
1.18 173

L

S
  

    
Thus, a resonating capacitance of G = 20 pF resonates the input port. In a YIG-tuned oscillator, this 

reactive element could be provided by the high-Q YIG element. For a dielectric resonator oscillator 

(DRO), the puck would be placed to give 1.0 173G    . 

 

 

Table 4-16 HP2001 bipolar chip common base  15V, 25mACE cV l   

0BL 
 

0.5nHBL 
 

11 0.94 174S  
 

1.04 173
 

21 1.90 28S   
 

2.00 30 
 

12 0.013 98S  
 

0.043 153
 

22 1.01 17S   
 

1.05 18 
 

0.09k    0.83  

 

 

Another two-port design procedure is to resonate the G  port and calculate '
22S , until '

22 1S  , than 

design the load port to satisfy. This design procedure is summarized in Figure 4-168. 
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One word of caution: 

At these high frequencies a good modeling is necessary, meaning that where possible the lumped elements 

have to be replaced by distributed elements. Here is an example: 
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An example using this procedure at 4 GHz is given in Figure 4-169 using an AT 41400 silicon bipolar 

chip in the common-base configuration with a convenient value of base and emitter inductance of 0.5 nH. 

The feedback parameter is the base inductance, which can be varied if needed. 

 

 

 

The two-port common-base S-parameters were used to give 

'
11

0.805
1.212 137.7

k
S

 

    

Since a lossless capacitor at 4 GHz of 2.06 pF gives 1 0 137.7G     , this input termination is used to 

calculate '
22S , giving '

22 0.637 44.5S   . This circuit will not oscillate into any passive load. Varying the 
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emitter capacitor about 20° on the Smith chart to 1.28 pF gives '
22 1.16 5.5S    , which will oscillate into 

a load of 0.861 5.5L   . The completed lumped element design is given in Figure 4-170. 
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We now switch from the lumped design to a microstrip design that incorporates a dielectric resonator. 

This oscillator circuit is given in Figure 4-171, where the dielectric resonator (DR) will serve the function 

of the emitter capacitor. This element is usually coupled to the 50- microstripline to present about 1000 

 of loading  20   at f0, the lowest resonant frequency of the dielectric puck, at the correct position 
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on the line. The load circuit will be simplified to  50 0L   , so the oscillator must have an output 

reflection coefficient of greater than 100, thus presenting a negative resistance between –49 and –50 . 

The computer file for analyzing this design is given in Table 4-17, where the variables are the puck 

resistance, the –50  microstripline length, and the base feedback inductance. The final design is given in 

Figure 4-172, where the 10-µH coils are present for the dc bias connections that need to be added to the 

design. It is important to check the stability of this circuit with the DR removed. The input –50  

termination will usually guarantee unconditional stability at all frequencies. The phase noise of this 

oscillator is very low at –117 dBc/Hz at 10-kHz frequency offset. 

 

 

 

 

 

 
* 
- 
* AT41400 AT 7.5V, 30 mA IN DRO 
* OSCILLATOR By Vendelin et a I. Microwave Journal June 1986 pp. 151-152 
BLK 
 TRL 1 2 Z=50 P=250MIL K=6.6 
 RES 2 3 R=?955.06? 
 TRL 3 4 Z=50 P=?224.16MIL? K=6.6 
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 IND 4 0 L=1E4NH 
 IND 4 5 L=.5NH 
 TWO 6 7 5 Q1 
 IND 6 0 L = ?.33843NH? 
 IND 7 0 L=1E4NH 
 0SC:2P0R 1 7  
END 
* 
FREQ 
 4GHZ 
END 
OUT 
 PRI OSC S 
END  
OPT 
 OSC 
 MS22 = 100 GT 
END 
DATA 
 Q1 : S 
 4 . 8057–176.14 2.5990 74.77.0316 56.54 .4306 –22.94 
END 
 

For simple oscillators with no isolating stage, one can expect a certain amount of pulling. Figure 4-173 

shows the tuning parameters as the load varies from 50 . The load LC R jX   influences the required 

input capacitance CE and the base inductor LB. The numbers in the graph are the resonant portion of the 

load impedance and the ratio X/R determines the Q line. It is obvious that such a circuit is quite interactive. 

As to the model for the dielectric resonator, the valid relationship is shown in Figure 4-174. 
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In Section 4-9 on microwave resonators, we will look at a more physical model. 

Finally, Table 4-18 describes the same DRO in the familiar Spice format. This particular Compact 

Software Inc. Spice model uses transmission elements Tl and T2 and the resonant frequency of the 

oscillator is determined by both the dielectric resonator and its position relative to the transmission line. 

In the equivalent circuit of the transistor, no values for a base-spreading resistor have been assumed. This 

modeling is done for demonstration purposes and does not relate to an actual transistor. A more practical 

circuit will follow. 

 
Compact Software - SUPER-SPICE 1.1 08/09/95 13:38:56 
File: C:\SPICE\CIR\DR0.cir 
Dielectric Resonator Oscillator with a BJT 
Q1 1 2 3 Q2NXXXX 
C1 2 4 100pf 
L1 4 0 0.3384nh 
L2 1 100 1uh 
L3 3 6 0.5nh 
lb1 6 0 1uh 
T1 6 0 7 0 Z0=50 TD=5.4378e–11 
cdro 7 8 .0397p 
Idro 7 8 40nh 
rdro 7 8 955 
T2 8 0 9 0 Z0=50 TD=4.876e–11 
R1 9 0 50 
C4 1 10 100pf 
P1 10 0 PNR=1 ZL=50 
*Biasing 
R3 100 2 3.6k 
R4 2 0 1.2k 
V1 100 0 7.5V 
● model Q2NXXXX NPN(Is=1-65e-18 Vaf=20 Bf=50 Nf=1.03 

file://///WHITAKERSERVER/Users/JerryWhitaker/SPICE/CIR/DR0.cir
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+ Ise=5f lkf=.1 Xtb=1.818 Br=5 cjc=.75p 
+ Fc=.5 Cje=.75p Mje=.6 Vje=1.01 xcjc=.5 
+ Tf=14p Itf=.3 Vtf=6 Xtf=4 Ptf=35) 
● IC V(2)=.001 
● TRAN 2N 500N 
● AC LIN 500 3GHZ 5GMZ 
● opt i 115 = 0 
● PROBE 
● END 

 
 Microwave Resonators 

For microwave applications, one is rapidly moving away from lumped to distributed elements. In the 

previous section, we looked at the case of a transmission line-based oscillator, which by itself has a low 

Q and was shown only for descriptive and design purposes. In similar fashion, we looked at the simplified 

description of a dielectric resonator-based oscillator. 

From a practical design point of view, most relevant applications are SAW resonators, dielectric 

resonators, and YIG oscillators. These are the three types of resonators we will cover in this section. 

 

SAW Oscillators 

The SAW oscillator has an equivalent circuit similar to a crystal but should be enhanced by adding the 

appropriate capacitance to ground. Figure 4-175 shows this. SAW oscillators are frequently used in 

synthesizers and provide a low phase noise, highly stable source, as can be seen in Figure 4-175. The 

SAW oscillator comes as either a one-port or two-port device. 
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The SAW resonator has fairly high insertion loss, as can be seen from Figure 4-176. The actual circuit of 

a high-performance SAW oscillator, as shown in Figure 4-177, consists of a bipolar transistor with a dc 

stabilizing circuit, SAW oscillator, and a feedback loop, which allows the phase to be adjusted. The SAW 

oscillator provides very good phase noise. The measured phase noise of such an oscillator is shown in 

Figure 4-178. The actual measured phase noise agrees quite well with this prediction  
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Dielectric Resonators 

In designing dielectric resonator-based oscillators, several methods of frequency stabilization are available 

that have been proposed by various authors. Figure 4-179 shows some recommended methods of 

frequency stabilization for dielectric resonator oscillators. The dielectric resonator consists of some high 

dielectric material coupled to a transmission line or microstrip structure. 
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Figure 4-180 shows the field distribution and interaction between the microstrip and the dielectric 

resonator. The two resulting applications, BandStop and BandPass filters, are displayed. Modeling this 

type of resonator is done by describing the resonator in the form of its physical dimensions. 

 

Table 4-19 shows the physical dimensions of the dielectric resonator in Super-Compact/Microwave 

Harmonica format. 

 

BLK  
DRM  1  2 D=6.12e-3 HD-2.45e-3 ER=38 HT=1.5e-3 S=.5e-3; + W=1.1e-3 L = 4e-3 

SRD=1e-4 BPF SUB; 
trf 2 0 0 3 N = 1 
pug: 2P0R 1 3 

END  
DATA  
 SUB: MS er=2.4 h=0.380e-3 met1=cu 3.175e-6 and=0.0001 
END  

 

A practical example of a 6-GHz dielectric resonator-based oscillator is shown in Figure 4-181 and its 

predicted phase noise is shown in Figure 4-182. 

For calibration purposes, it may be useful to plot the phase noise of different oscillators, including YIG 

oscillators, as shown in Figure 4-183, but normalized to a center frequency of 6 GHz. Another way of 

plotting this is to show the phase noise of silicon bipolar transistors versus FETs at 10 kHz offset from the 

carrier, as shown in Figure 4-184. This plot does not incorporate for heterojunction bipolar transistors 

because they are not yet readily or commercially available. 
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For more detailed information on DROs please refer to Appendix E. 

 

YIG Oscillators 

For wideband electrically tunable oscillators, we use either a YIG or a varactor resonator. The YIG 

resonator is a high-Q, ferrite sphere of yttrium ion garnet, Y2Fe2 (FeO4)3, that can be tuned over a wide 

band by varying the biasing dc magnetic field. Its high performance and convenient size for applications 

in microwave integrated circuits make it an excellent choice in a large number of applications, such as 

filters, multipliers, discriminators, limiters, and oscillators. A YIG resonator makes use of the 

ferrimagnetic resonance, which, depending on the material composition, size, and applied field, can be 

achieved from 500 MHz to 50 GHz. An unloaded Q greater than 1000 is usually achieved with typical 

YIG material. 

Figure 4-185 shows the mechanical drawing of a YIG oscillator assembly. The drawing is somewhat 

simplified and the actual construction is actually more difficult to do. Its actual circuit diagram is shown 

in Figure 4-186. 
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Tuning Diode based Resonators 

The dual of the current-tuned YIG resonator is the voltage-tuned varactor, which is a variable reactance 

achieved from a low-loss, reverse-biased semiconductor PN junction. These diodes are designed to have 

very low loss and therefore high Q. The silicon varactors have the fastest settling time in fast-tuning 

applications, but the gallium arsenide varactors have higher Q values. The cutoff frequency of the varactor 

is defined as the frequency where 1vQ  . For a simple series RC equivalent circuit, we have 

1
v

v

Q
RC



 (4-226) 

0
1

2c
v

f
RC



 (4-227) 

The tuning range of the varactor will be determined by the capacitance ratio max minC /C , which can be 12 

or higher for hyper-abrupt varactors. Since R is a function of bias, the maximum cutoff frequency occurs 

at a bias near breakdown, where both R and vC  have minimum values. Tuning diodes or GaAs varactors 

for microwave and millimeter-wave applications are frequently obtained by using a GaAs FET and 

connecting source and drain together. Figure 4-187 shows the dynamic capacitance and dynamic resistors 

as a function of tuning voltage. In using a transistor instead of a diode, the parameters become more 
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complicated. Figure 4-188 shows the capacitance, equivalent resistor, and Q, as well as the magnitude of 

11S , as a function of reverse voltage. This is due to the breakdown effects of the GaAs FET. 

 

 

 

 

 

Previously, we had discussed in great detail the tuning diode applications. The major differences between 

these applications and microwave applications have to do with the resulting low Q and different 

technology. This is the reason why discussions of both applications were separated. 
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Ceramic Resonators 

An important application for a new class of resonators called ceramic resonators (CRs) has emerged for 

wireless applications. The CRs are similar to shielded coaxial cable, where the center controller is 

connected at the end to the outside of the cable. These resonators are generally operating in quarter-

wavelength mode and their characteristic impedance is approximately 10 . Because their coaxial 

assemblies are made for a high- low-loss material with good silver plating throughout, the 

electromagnetic field is internally contained and therefore provides very little radiation. These resonators 

are therefore ideally suited for high-Q, high-density oscillators. The typical application for this resonator 

is VCOs ranging from not much more than 200 MHz up to about 3 or 4 GHz. At these high frequencies, 

the mechanical dimensions of the resonator become too tiny to offer any advantage. One of the principal 

requirements is that the physical length is considerably larger than the diameter. If the frequency increases, 

this can no longer be maintained. 

 

Calculation of an Equivalent Circuit of the ceramic resonator 

The equivalent parallel-resonant circuit has a resistance at resonant frequency of 

2
0
*

2( )
p

ZR
R l


  

0

*

where characteristic impedance of the resonator
 = mechanical length of the resonator

equivalent resistor due to metalization and other losses

Z
l

R



  
As an example, one can calculate 

* 120

e e

2 55.61 10
log ( / ) log ( / )

r rC
D d D d

    

 (4-228) 

and 

* 70
e elog 2 10 log

2
r D DL

d d
 



   
      

     (4-229) 

0 e
160 log

r

DZ
d

 
   

   (4-230) 
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A practical example for 88r   and 450 MHz is 

* 49.7 pF
2p

C lC  
 (4-231) 

8 * 2.52 nHpL L l   (4-232) 

2.5 kpR    (4-233) 

Manufacturers supply these resonators on a prefabricated basis. Figure 4-189 shows the standard 

round/square packaging available and the typical dimensions for a ceramic resonator. 

 

 

 

The available material has a dielectric constant of 88 and is recommended for use in the 400- to 1500-

MHz range. The next higher frequency range (800 MHz to 2.5 GHz) uses  of 38, while the top range (1 

to 4.5 GHz) uses  of 21. Given the fact that ceramic resonators are prefabricated and have standard outside 

dimensions, the following quick calculation applies: 

 

Relative dielectric constant of resonator material 21r   38r   88r   

Resonator length in millimeters 16.6l
f



 

12.6l
f



 

8.2l
f


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Temperature coefficient (ppm/°C) 10 6.5 8.5 

Available temperature coefficients –3 to +12 –3 to +12 –3 to +12 

Typical resonator Q 800 500 400 

 

Figure 4-190 shows the schematic of such an oscillator. Figures 4-191 and 4-192 show the simulated and 

measured phase noise of the ceramic-resonator-based oscillator. 
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By using ceramic-resonator-based oscillators in conjunction with miniature synthesizer chips, it is possible 

to build extremely small phase-locked loop systems for cellular telephone operation. Figure 4-193 shows 

one of the smallest available PLL-based synthesizers manufactured by Synergy Microwave Corporation. 

Because of the high-Q resonator, these types of oscillators exhibit extremely low phase noise. Values of 

better than 150 dB/Hz, 1 MHz off the carrier, are achievable. The ceramic resonator reduces the sensitivity 

toward microphonic effects and proximity effects caused by other components. 



 
 

93 
 

 

 

 A Novel Tunable Active Spiral Inductor 

All oscillators including the Colpitts Oscillator need both capacitor and inductor and they need to be in 

resonance at the desired frequency. So far we have made no comments about the inductor, but showed 

some resonators like the ceramic resonators (quarter wave resonator) or DRO (dielectric resonator based 

oscillator) but in most cases the inductor is a discrete element. For the use on printed circuits or in 

integrated circuits, the inductors are typically rectangular wound devices, as shown in the figure below: 
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The sketch of the spiral inductor shows the mechanical assembly. One of the tricks is to connect the input 

and output of the inductor, for the inner connection, an air-bridge is not uncommon. Of course it adds to 

the inductor value. The real electrical values depend upon the substrate and other manufacturing methods. 

The following is a detailed lumped model of a spiral inductor. 

 

 
 

 

With today’s electromagnetic tools like ANSYS HFSS, or CST Software, a more exact value can be 

determined. The electromagnetic simulation would look like this fig (xx) shown below: 

 

PASSIVE SPIRAL INDUCTOR BEHAVIOUR 
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The agreement between the measured S-parameter based and EM-Simulated values is extremely good. 

However, the physical size of the chip inductor requires a large die area, thus not a cost-effective solution. 

 

INTRODUCING THE GYRATOR: 

B. D. H. Tellegen of Philips Research Laboratory proposed a new 2-port network element, a Gyrator in 

1948, which exhibits an immittance conversion property, needed to generate an synthesized active 

inductor using transistors.  

 Where ‘g’ is called gyration capacitance. 

 

 

An admittance Y connected to the secondary terminals is converted to its dual g2/Y, this phenomena is 

called immittance conversion, C transforms into L, parallel tuned circuit into series tuned circuit 

We have just seen that the inductor requires a lot of space and is difficult to build. So if we resort to the 

gyrator, invented by a researcher of Phillips Research Lab, in 1948, we can electronically transform a 

capacitor into an inductor.  

However, we need to ask the question immediately, how about the dynamic range under large signal 

conditions, the noise contribution of the active circuit and the required DC power? We will get to this 

soon.  

 

 The Active Inductor Using a Gyrator 

 

Tunable Active Inductor (TAI) 

  Integrable and Compact 

  Cost-Effective 

  Power-Efficient Solutions 
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TAI: Design Challenges 

   High Power Consumption 

   Noise Figure & Instability 

   Low Dynamic Ranges 

 

-gm2

Port # 1

-R+jL

gm1

Phase
Compensating
Network (RC)

Port # 2

Vcontrol

 ( )

C

TAI using Gyrator

 
 

 

Phase shift network () is required in TAI topology for suppressing the higher order modes and self-

oscillation 

SYNTHESIZED INDUCTOR BEHAVIOUR 
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Impedance plot reveals the inductive behavior of the circuit from 600MHz (#2) to 30GHz (#5). Care must 

be taken to avoid the encircling and crossing at 4.3GHz (#3), which limits the applications. 

In the case of a mathematics based time domain related prediction in the nonlinear oscillator system the 

use of Bessel function is helpful. 

 

LAYOUT OF OSCILLATOR UISNG SPIRAL INDUCTOR 

 Why use an Active Inductor instead of a Spiral Inductor? 

L1

 

LayoutL2  
 

Physical size of spiral inductor 

 
 

 

Why we avoid the use of on-chip inductors! 
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COMPARISION: PASSIVE & ACTIVE INDUCTOR 
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 INTRODUCTION: ACTIVE INDUCTOR OSCILLATOR 

Figure shows the typical Active Inductor Oscillator (AIO), includes a stable active inductor within a 

conventional integrated LC oscillator   

 
 

OSCILLATOR PHASE NOISE BASED ON ACTIVE INDUCTOR  
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 SYNTHESIZED INDUCTOR CIRCUITS 

 
 

 

 

This Figure shows a schematic of a transistorized inductor using SiGe HBT (BFP 620) from Infineon. The 

reason for using a high cut-off frequency (ft=75 GHz) SiGe HBT transistor is to minimize the package 

parasitic effects and allow comparative evaluations of the 1.9 GHz varactor-tuned and synthesized 

inductor-tuned LC oscillator using discrete components for experimental validations! 

 

The plot in the Figure-XX below shows the typical plot of reactance and equivalent loss resistance of the 

synthesized inductor using high cut-off frequency (ft=75 GHz) SiGe HBTs.  
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As shown in Figure, the value of the realized inductance and associated equivalent loss resistance are 

0.8nH and 1.9 at 1.9 GHz for the operating DC bias condition (3V, 1.8mA) and Vtune (2.5V). The 

operating DC bias and Vtune are adjusted in such a way that the realized equivalent noise resistance must 

be positive to avoid the multi-mode oscillations caused by the regenerative effect (if the simulated loss 

resistance associated with realized inductor has a negative value).  

 

SIMULATED OSCILLATOR PHASE NOISE PLOTS 
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ACTIVE INDUCTOR NOISE 

 

 

 

 

 

 

 

 

 

 
Vgm1 and Vgm2 are the equivalent noise voltages generated by the transconductances of the Gyrators 

 

 

 
 

 

 

 

Circuit that transforms a capacitor into 
an inductor and identifies the noise 

A simplified circuit of active 
inductor resonator with noise 
sources  
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Since the following applies,  

  
where R and G are the negative resistance and conductance values, and the coefficients  rn and gn are 

frequency dependent relative noise resistance and conductance (these give a comparative value of how 

much noise the active negative resistor produces compared to a passive resistor of the same value).  

The total noise spectral density in voltage squared, of the active inductor resonator is 

 
The time average Q-factor of active inductor is 

 
The time average normalized noise power of an active inductor resonator can be determined by  

 

 

 

 

 
This calculation has not been shown before.  
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 PHASE NOISE CONTRIBUTION OF THE VARIOUS PARTS OF THE 

OSCILLATOR USING AN ACTIVE INDUCTOR 

 

 

 

 

 

 

 

 

 

 

 

The total noise voltage power within 1 Hz bandwidth can be described by  

20
2

10
22 )]([])([)(

0 gmngmnn eee    
 

The first term is related to the active inductor noise due to the active inductor and the second term is 

related to negative resistance generative active device. 

After some lengthy calculations and minimal approximations, adding shot noise, flicker noise and the 

loss resistor, the equivalent expression of the phase noise turns out to be 

 

 

 

 

[4kTR] is the thermal noise of the resonator. 
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The values of p and q depend upon the drive level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Figure shows the schematic of self-injection-locked inductor-tuned Colpitts oscillator realized by 

incorporating phase shifter network in the feedback path, which improves the 1/f noise, including 

linearization of the large signal drive-level characteristics of the synthesized inductor circuits. Injection 

locked oscillators are frequently used to reduce the wideband noise. The oscillator’s tuned-circuit based 
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on its Q reduces the far out noise, while up-multiplication makes the noise worse. A variation of the 

injection locked oscillator is the self-injection, which improves the phase noise further. 

 

CAD simulated phase noise plot: 

 
 

 

Figure shows the CAD simulated (WITH AND WITHOUT INJECTION LOCKING) 

The figure above shows the noise improvement simulation based on injection locking which close-in has 

a 17dB improvement, while further out at 1MHz offset, shows 10dB improvement, and below is the 

measured phase noise plot of injection locked 1.9 GHz Tunable Active Inductor (TAI). As shown in Figure 

XX, injection-locking improves the phase noise performance by 8-10 dB, including the locking range. 

Measured phase noise plot (Injection-Locked) 
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SUMMARY – Tunable Active Inductors 

This research work demonstrates the state-of-the-art in designing the novel tunable inductor based VCO 

(voltage controlled oscillator) circuits presented in my dissertation to obtain the Habilitation Status of 

“Dr.-Ing. habil.” presented to the Faculty 3: Mechanical engineering, Electrical engineering and industrial 

engineering, Brandenburg University of Technology Cottbus, Germany 

 Use of TAI (Tunable Active Inductor) resonator is relatively new and its application to replace 

tuning diodes in VCO (voltage controlled oscillator)  have recently begun to be explored 

 Closed form noise models for TAI VCOs involved complex mathematical treatment due to the 

convergence problems at large drive-level 

 Limitation in the dynamic range may restricts the applications in high performance tunable filters, 

nevertheless by incorporating my novel techniques one can improve the dynamic range up to an 

accepted limit 

 The behavior of the TAI (Tunable Active Inductor) oscillator was studied and verified with 

practical examples.  

 Intensive studies were conducted to find the optimum configuration for the improvement in the 

phase noise over the tuning range, and a US Patent application was filed. 
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 The extension of the research work is to increase the tuning range and dynamic range by employing 

injection mode coupling and noise cancellation techniques in monolithic IC technology. 

 I expect to see continued research in this field and the use of TAI (Tunable Active Inductor) 

components as a cost-effective alternative of tuning diodes (Varactor) as a tuning element in filter, 

resonator, antenna matching network and phase shifter for the applications in concurrent and 

configurable RF & MW modules/systems. 

 

 The Modern Time-Domain Behavior of an Oscillator 

The following is a detailed mathematical analysis of the time-domain behavior of oscillators, intended as 

a stand-alone mathematical derivation. It was developed between Prof. Rizzoli and team from the 

University of Bologna, Rowan Gilmore and Prof. Fred Rosenbaum from the University of Washington, 

St. Louise, and my team at Compact Software, where we introduced the world’s first harmonic balance 

mathematics based simulator, that could handle nonlinear noise in amplifiers, frequency doublers, mixers 

and finally oscillators.  

The semiconductor noise contribution for the various devices was fairly challenging, and validated. 

The large-signal transfer characteristic affecting the current and voltage of an active device in an oscillator 

circuit is nonlinear.  It limits the amplitude of the oscillation and produces harmonic content in the output 

signal.  The resonant circuit and resulting phase shift sets the oscillation frequency.  The nonlinear, 

exponential relationship between the voltage and current of a bipolar transistor is given as 

 

kT
tqv

seIti
)(

)(      (6-82) 

 

sI is device saturation current, )(tv is the voltage drive applied across the junction, k is Boltzman’s 

constant, q is the electronic charge, and T is the temperature of the device in Kelvins.   The bipolar case 

is mathematically more complex than the FET case.  For the FET a similar set of equations exist which 

can be derived.  Since most RFIC’s now use SiGe bipolar transistors, the bipolar case has been selected.   
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The voltage )(tv across the base-emitter junction consists of a DC component and a driven signal voltage 

)cos(1 wtV .  It can be expressed as  

 

)cos()( 1 wtVVtv dc      (6-83) 

 

As the driven voltage )cos(1 wtV increases and develops enough amplitude across the base-emitter 

junction, the resulting current is a periodic series of pulses whose amplitude depends on the nonlinear 

characteristics of the device and is given as 

 

kT
tqv

se eIti
)(

)(        (6-84) 

 

kT
wtqV

kT
qV

se eeIti
dc )cos(1

)(      (6-85) 

 

)cos()( wtxkT
qV

se eeIti
dc

      (6-86) 

 

assuming Ic  Ie (>10) 

 

kT
qV

qkT
Vx 11

)/(
      (6-87) 

 

)(tie is the emitter current and x  is the drive level which is normalized to qkT / . 

  

From the Fourier series expansion, )cos(wtxe  is expressed as 

 

)cos()()cos( nwtxae
n

n
wtx 

    (6-88) 
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)(xan is a Fourier coefficient and given as 

 

)()(
2
1)( 0

2

0

)cos(
00 xIwtdexa wtx

n  



     (6-89) 
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

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1

0
)cos( )cos()()()cos()( nwtxIxInwtxae n

n
n

wtx

  (6-91) 

 

)(xI n  is the modified Bessel function. 

 

As 
!
)2/()(0

n
xxIx

n

n      (6-92) 

 

)(0 xI  are monotonic functions having positive values for x0 and n0; )0(0I is unity, whereas all 

higher order functions start at zero. 

 

The short current pulses are generated from the growing large-signal drive level across the base-emitter 

junction, which leads to strong harmonic generation. The emitter current represented above can be 

expressed in terms of harmonics as 
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)(0 xIeII kT
qV

sdc

dc

      (6-94) 
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Is = collector saturation current 

 

)(ln 0 xI
q

kTVV dcQdc 

    (6-96) 
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dcQV  and dcI  are the operating DC bias voltage and the DC value of the emitter current. Furthermore, the 

Fourier transform of )(tie , a current pulse or series of pulses in the time domain yields a number of 

frequency harmonics common in oscillator circuit designs using nonlinear devices. 

The peak amplitude of the output current, the harmonic content defined as 








)(
)(

1 xI
xI N , and the DC offset 

voltage are calculated analytically in terms of the drive level, as shown in Table 6-1.  It gives good 

insight of the nonlinearities involved in the oscillator design.  

 

Table 6-1   For T=300 K, data are generated at a different drive–level. 
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Drive level 

[x] 

Drive-Voltage 

[ q
kT

*x] mV 

Offset-

Coefficient 

ln[I0(x)] 

DC-Offset 

)]([ln 0 xI
q

kT

mV 

Fundamental 

Current 

2[I1(x)/I0(x)] 

Second-

Harmonic 

[I2(x)/I1(x)

] 

0.00 0.000 0.000 0.000 0.000 0.000 

0.50 13.00 0.062 1.612 0.485 0.124 

1.00 26.00 0.236 6.136 0.893 0.240 

2.00 52.00 0.823 21.398 1.396 0.433 

3.00 78.00 1.585 41.210 1.620 0.568 

4.00 104.00 2.425 63.050 1.737 0.658 

5.00 130.00 3.305 85.800 1.787 0.719 

6.00 156.00 4.208 206.180 1.825 0.762 

7.00 182.00 5.127 330.980 1.851 0.794 

8.00 208.00 6.058 459.600 1.870 0.819 

9.00 234.00 6.997 181.922 1.885 0.835 

10.00 260.00 7.943 206.518 1.897 0.854 

15.00 390.00 12.736 331.136 1.932 0.902 

20.00 520.00 17.590 457.340 1.949 0.926 

      

 

From the table above, the peak current 2[I1(x)/I0(x)] in column 5 approaches 1.897Idc for a drive level 

ratio x=10. 

 

for T=300K, mV
q

kT 26       (6-98) 

 

and mVV 2601  for  x=10     (6-99) 
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The second harmonic-distortion [63] 
)(
)(

1

2

xI
xI  is 85% for a normalized drive level of x=10 and the 

corresponding DC offset is 205.518mV.  When referring to the amplitude, x is always meant as 

normalized to 
q

kT .  Figure 6-10 is generated with the help of Math-CAD, and shows the plot of the 

normalized fundamental and second harmonic current with respect to the drive level.  

 
 

 

One can notice that as the drive level x increases, the fundamental 2I1(x)/I0(x) and harmonic I2(x)/I1(x) 

increases monotonically.  Figure 6-11 shows the plot of the coefficient of offset )]([ln 0 xI with respect to 

drive level x so that the DC offset voltage can be calculated at different temperatures by simply 

multiplying the factor 
q

kT  [61].   
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 )]([ln 0 xI
 

At T= 300K the DC voltage shift is - mVxI )]([ln26 0   

 

for x=10       (6-100) 

 

)(ln 0 xI
q

kTVV dcQdc 

    

mVxI
q

kTV offsetdc 206)(ln 0      (6-102) 

 

dcQV  and offsetdcV   are the operating bias points and DC offsets due to an increase in the drive level.  The 

DC voltage shift at x=10 is 206mV.  Figure 6-12 shows the shape of the output current with respect to 

the drive level and demonstrates that as the drive level increases, the output current pulse width becomes 

shorter and the peak current amplitude becomes greater. 

  

0)( 10xe ti ,  For conduction angle 600    (6-103) 

 

0)( 5xe ti ,  For conduction angle 900    (6-104) 

 

0

5

10

15

20

0 5 10 15 20

ln
[I

0
(x

)]

X



 
 

115 
 

0)( 2xe ti , For conduction angle >1800    (6-105) 

 

The harmonic content trade-off is an important consideration in reducing the noise content by using 

shorter current pulses [64-67].  

 

 
 

 

 

The bipolar transistor is represented by a current source and an input conductance at the emitter for 

easier analysis of the reactance transformation.  For easier calculation of the capacitive transformation 

factor n, the oscillator circuit is rearranged as shown in Figure 6-15 [68]. 
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Ie and Y21 are the current source and large-signal transconductance of the device given by the ratio of 

the fundamental-frequency component of the current to the fundamental-frequency of the drive voltage. 
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21      (6-112) 
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x = normalized drive level from (6-87) 
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Connected from collector to base, will see a total conductance Gtotal. The oscillator circuit with passive 

component parameters is shown in Figure 6-17. 

 

 
 

 

where 

 

1111 CjjBGY   For 01 G     (6-120) 
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; 

 

2G = loss parameter/load conductance of the resonator connected parallel to the resonator component C1, 

C2 and L, respectively. 

 

23333 CjGjBGY  ;  

 

3G = conductance of the bias resistor placed across C2, 1/RL in Figure 6-17. 

 



 
 

118 
 

The large-signal transconductances Y21 and G1 are transformed to the current source through the voltage 

divider 
cb

eb

V
V .   The voltage Veb must be added to Vce to calculate the transformation ratio, which can be 

written as 

 

nCC
C

V
V

cb

eb 1

21

2 


      (6-121) 

 

and 

n
n

CC
C

V
V

cb

ce 1

21

1 



     (6-122) 

The conductance G2 is already in parallel with the current source so it remains unchanged.  The factor n 

represents the ratio of the collector-base voltage to the emitter-base voltage at the oscillator resonance 

frequency. 
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G2 remains constant 

       

The transformed conductance is proportional to the square of the voltage ratios given in Equations (6-

121) and (6-122), producing a total conductance as seen by the current source at resonance as 
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For sustained oscillation, the closed loop gain at resonance is given as 
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 is assumed to be 0.98 and variation in the value of , does not influence the expression above greatly. 

Rearranging the device conductance and circuit conductance, the general oscillator equation, after 

multiplying (6-126) with n on both sides, is written as 
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From the quadratic equation above, the value of the factor n can be calculated, and thereby, an estimation 

of the capacitance can be done a priori. To ensure higher loop gain, 1n  is selected from n[ 21 , nn ]. 

 

Once the value of n is fixed, then the ratio of the capacitance is calculated as 
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If 3G and 1G are zero then the above quadratic equation is reduced to 
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From equation (6-135) and (6-138) 
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For a relatively optimum phase noise, the drive level has to be adjusted in such a way that the output 

current pulse is conducting for a short period without appreciably increasing the harmonic content.  

Chapter 8 will show the absolute best phase noise operating point. 

 

From equation (6-117) follows        

 

10

1

10

1
arg21 )(

)(2
)(
)(2)(



 


















n

m

n

dc
msignalel xI

xI
x

g
xI
xI

kTx
qIxGY

   (6-143) 

 

From equation (6-142)         
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From equation (6-143) and  (6-144)      
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From equation (6-119)          
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The value of 
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xI increases monotonically as the drive level x increases, and for large values of x 

and C2 <C1, n>1, the dependency of x can be expressed as  

 

1

2

C
CGRx mP        (6-149) 

 

For large drive level, 2Cx   and the corresponding conduction angle of output current is given as 
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
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
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11

3
1cos
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C
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      (6-151) 

 

2

1
C

       (6-152) 

 

2Cx        (6-153) 

 

Normally, the value of C1 is kept fixed to avoid loading by the transistor. By increasing the value of C2, 

the conduction angle can be reduced, thereby, shortening the output current pulse. Any change in 

designed frequency, due to the variation of C2, can be compensated by changing the value of the 

resonator inductance without much change of the value of the drive level x. 
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 Test Case: Design Example of a 100MHz crystal oscillator 
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 100 MHz Crystal Oscillator 

C1: = 15.6pF C2: = 12.5pF kT: = 4.143 · 10−21 ∙ J R: = 0.2 · Ω 

qcharge: =  1.602 · 10−19 · coul Ic: = 8.2 · mA Ib = 220 · μA 

y11: = (0.000884 − 0.0000158j · mho   

y21: = (0.0105 − 0.00084j) · mho     

L: = 6.4949 · 10−3 · henry af: = 2 kf≔ 1·10-10 𝑦: =
𝐶1

𝐶2
 

Vcc: = 10V i: = 0. .7 p: = 1.45 q: = 1.05 

Q: = 25000 Q0: = 180000 nfdB: = 4.747 PoutdB: = 13 

fc: = 100 MHz wc: = 2π · fc gm: =  |y21| · yq  

foi: = 10i · Hz woi: = 2π · foi B1i: = (woi)
2 · L2 · Vcc2 

kconstant: =
KT · R 

wc2 ∙ C22
 k0i: =

kconstant 

B1i
 b: =

|y21| · yp 

|y11|
  

k1constanti: = qcharge · Ic · gm2 +  
kf · Ibaf · gm2

woi
 

k1i ≔
k1constanti

wc2 ∙ B1i
 k3i ≔ wc2 ∙ gm2

 k2i ≔ wc4 ∙ b2 ki ≔
k3i

k2i ∙ C22
 

t2i ≔ k0i

(1 + y)2 

y2  

t1i ≔ [(
b2

gm3
)

2

∙
ki

3 ∙ k1i ∙ (wc)2 

y2 + ki
]

∙
(1 + y)2 

y2
 

1i ≔ t1i + t2i 

mi ≔ 10 ∙ log [1i ∙ (kg−2 ∙ m−4 ∙ s5 ∙ A2) ∙
Q02

Q2
] 

Li ≔ if[mi < (−177 + 𝑃𝑜𝑢𝑡(𝑑𝐵𝑚) − 𝑛𝑓𝑑𝐵)), (−(177 + 𝑃𝑜𝑢𝑡𝑑𝐵 − 𝑛𝑓𝑑𝐵)), mi  
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  Phase Noise Analysis Based on the Negative Resistance Model 

The following noise analysis for the oscillator, while based on the approach of Kurokawa [82], is an 

attempt to introduce the concept of a “noisy” negative resistance, which is time dependent.  Kurokawa, 

addressing the question of synchronized oscillators, provided insight in the general case of a series 

oscillator.  The method introduced here is specific for a real oscillator and real noise sources.  

 
I now take the basic Colpitts oscillator circuit and develop: 
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The following two circuits show the transition from a series tuned circuit connected with the series time-

dependent negative resistance as outlined in Equation (6-1) and the resulting input capacitance marked 

CIN.  Translated, the resulting configuration consists of a series circuit with inductance L and the resulting 

capacitance C'.  The noise voltage eN(t) describes a small perturbation, which is the noise resulting from 

RL and –RN(t).   

 

Figure 8-3 shows the equivalent representation of the oscillator circuit in the presence of noise. 

-RN(t)

CIN

RL

L

C -RN(t)

RLL

C'

eN(t)

i(t)

 
 

 



 
 

129 
 

The circuit equation of the oscillator circuit of Figure 8-3 can be given as 

 

)()(1)())(()(
' tedtti

C
titRR

dt
tdiL NNL      (8-11) 

 

where i(t) is the time varying resultant current.  Due to the noise voltage eN(t),  Equation (8-11) is a 

nonhomogeneous differential equation.  If the noise voltage is zero, it translates into a homogeneous 

differential equation. 

 

For a noiseless oscillator, the noise signal )(teN is zero and the expression of the free-running oscillator 

current i(t) can be assumed to be a periodic function of time and can be given as 

  

)cos(......)3cos()2cos()cos()( 332211 nn tnItItItIti     (8-12) 

 

where I1, I2 …..In  are peak harmonic amplitudes of the current and 1, 2…..n are time invariant phases. 

 

In the presence of the noise perturbation )(teN , the current i(t)  may no longer be a periodic function of 

time and can be expressed as  

 

)](cos[)()]()1cos[()()]()2cos[()(.
)](3cos[)()](2cos[)()](cos[)()(

1122

332211

ttntIttntIttntI
tttItttItttIti

nnnnnn 







  
 (8-13) 

 

where I1(t), I2(t)…..In(t) are time variant amplitudes of the current and 1(t), 2(t)…..n(t) are time variant 

phases. 

 

Considering that In(t) and n(t) do not change much over the period of 2/n; each corresponding 

harmonic over one period of oscillation cycle remains small and more or less variant.  The solution of the 
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differential equation becomes easy since the harmonics are suppressed due to a Q > 10, which prevents 

i(t) to flow for the higher terms. 

 

After the substitution of the value of 
dt
di  and  dtti )( , the complete oscillator circuit equation, as given in 

Equation (8-11), can be rewritten as 
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(8-14) 

 

Because Q > 10 we approximate: 
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After the substitution of the value of 
dt
di  and  dtti )( , the oscillator circuit Equation (8-14) can be rewritten 

as 
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Following [82], and for simplification purposes, the equations above are multiplied with )](sin[ 1 tt  

or )](cos[ 1 tt    and integrated over one period of the oscillation cycle, which will give an approximate 

differential equation for phase )(t and amplitude i(t) as  
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where )(tR N  is the average negative resistance under large signal condition.  
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Since magnitude of the higher harmonics are not significant, the subscript of )(t and )(tI are dropped.   

Based on [82], we now determine the negative resistance. 

 

Calculation of the Region of the Nonlinear Negative Resistance 

 

Under steady-state free running oscillation condition,  

 

0)(


dt
tdI  

 

implies steady current, and 
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0)( teN   

 

with I = fundamental RF current.  Solving the now homogeneous differential equation 

for RL – RN(t) and inserting the two terms into 8-17, we obtain 
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 term  0 

 

now we introduce ;  = 
I
R


 ; for  0,   0 and  
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0)]([cos)(2)(
0

2

0









 



dttttR
T

RtRR
t

Tt
NLoadNL     (8-21) 

 

0)(])([  tItRR NL   gives the intersection of [ ])(tR N and [RL]. This value is defined as I0 which is the 

minimum value of the current needed for the steady-state sustained oscillation condition. 

 

Figure 8-4 shows the plot of the nonlinear negative resistance, which is a function of the amplitude of the 

RF current.  As the RF amplitude gets larger the conducting angle becomes more narrow. 
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 )(tR N

 

For a small variation of the current I from I0, the relation above is expressed as  

 

ItRR NL  ])([      (8-22) 

 

 I can be found from the intersection on the vertical axis by drawing the tangential line on [ )(tR N ] at 

I = I0.  | I | decreases exponentially with time for >0.  

 

Hence, I0 represents the stable operating point. On the other hand, if [ )(tR N ] intersects [RL] from the other 

side for <0 then | I | grows indefinitely with time.  Such an operating point does not support stable 

operation]. 

 

Summary Results 

After  a really long set of mathematical manipulations, see  

The Design of modern Microwave Oscillators for Wireless Applications ,Ulrich L. Rohde , Ajay K. 

Poddar, Georg Boeck 2005 Wiley, Chapter 8. 
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The analysis of the oscillator in the time domain has given us a design criteria to find the optimum value 

of 
2

1

C
C

y   with values for y + 1 or n ranging from 1.5 to 4.  For values above 3.5, the output power is 

reduced significantly.   

 

Consistent with the previous chapters, we note  

 

)(*
11 PP LorCXCC      (8-118) 

 

 

PPbbe LorCLorCX )(     (8-119) 

 

In the case of a large value of CP (CP>C1), X1 has to be inductive to compensate extra contributions of the 

device package capacitance to meet the desired value of C1!   

 

The following is a set of design guides to calculate the parameters of the oscillator.   
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2C is best be determined graphically from the noise plot.    
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The phase noise in dBc/Hz is shown as 
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The phase noise improves with the square of the loaded QL!  10% higher Q  20% better phase noise! 

 

L  2

1)(
INC

      (8-126) 

 

The loaded Q of the resonator determines the minimum possible level of the oscillator phase noise for 

given bias voltage and oscillator frequency.  

 

To achieve close to this minimum phase noise level set by the loaded QL of the resonator, the optimum 

(rather, how large the value of the CIN can be) value of CIN is to be fixed. 
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To achieve the best possible phase noise level, the feedback capacitors C1 and C2 should be made as large 

as possible, but still generate sufficient negative resistance for sustaining steady-state oscillation. 

 

21
2
0

tan
11][
CC

R ceresisnegativeN


 , (no parasitics)     (8-127) 

 

The negative resistance of the oscillator circuit is inversely proportional to the feedback capacitors. 

Therefore, the limit of the feedback capacitor value is determined by the minimum negative resistance for 

a loop gain greater than unity. 

 

From the phase noise equation discussed, the feedback capacitor C2 has more influence compared to C1.  

The drive level and conduction angle of the Colpitts oscillator circuit is a strong function of C2.   

 

The time domain approach has provided us with the design guide for the key components of the oscillator; 

however, it did not include all the noise sources of the transistor.  By using the starting parameters, such 

as C1 and C2 and the bias point, as well as the information about the resonator and the transistor, a complete 

noise model/analysis will follow 

 

This section describes a design example based on the Phase Noise Analysis of the Feedback Model. Up 

to here we have calculated both the large-signal drive condition, as well as the optimum choice of the 

feedback capacitance. Now, we are going to consider the oscillator as a feedback loop with a noisy 

transistor, looking at all typical noise contributions. Based on a fixed set of values of C1 and C2, we can 

now calculate the accurate phase-noise behavior of the oscillator and analyze the various noise 

contributions. 

First, the noisy bipolar transistor will be introduced. Figure 19 shows the familiar hybrid- transistor 

circuit and Figure 20 shows the equivalent circuit with the relevant noise sources included. 
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The mean square value of the noise generators in Figure 20, in a narrow frequency offset f, are given 

by 

2 2bn bi qI f   (67) 

2 2cn ci qI f   (68) 

2 2con cobi qI f   (69) 

2 4bn bv kTR f   (70) 

2 4sn Sv kTR f   (71) 

where Ib, Ic, and Icob are average DC currents over the f noise bandwidth. 

The noise power spectral densities due to these noise sources are 
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where 
'

br  and Rs are base and source resistance, and Zs is the complex source impedance. 

Figure 21 shows the feedback arrangement for the Colpitts oscillator with the noise sources. 

c'Cb'c

gmV1 rogb'e

Cb'e

e

icon

icn

ibn

b'

2-port representation of feedback-Network

2-Port representation of bipolar transistor

L0

C0

C1 C2 RE

CC2CC

Cc'e

 
 



 
 

140 
 

The transistor is acting like a gain block. The feedback network includes the load conductance and a 

small part of the output signal goes to the input of the bipolar transistor through the resonant circuit. The 

ABCD chain matrix will be used for the analysis. 

Figure 22 shows the linear representation of the Colpitts oscillator with the input white noise source 

( )ni  . 

in [ABCD]V1 gmV1

Feedback-Network

V2

I1
I2

 
 

( )ni 

 

This is not consistent with Figure 21, but useful because all non-active components are now in the 

feedback network. 

The input noise power spectral density can be given as 

2
n

in

i
S

f

  (77) 

Where: 

2 2 2 2 2
1 2 3 ( 1)

1
......... 2 [ ]

i N

n ni n n n ii ni n i
i

i i i i i C i i








    
 (78) 

Cii = the noise correlation coefficient 

The [ABCD] matrix of the above oscillator circuit can be given as 

0
22

0 0

1 1[ ] 1
1c E

j LA j C
j C L C R




 

   
      

      

0
22

2 0 0 2

1 1 1 1[ ] 1
1c E

j LB j C
j Cc j C L C R j Cc




   

     
         

        

0
1 2 1 2

0 0

1 1[ ] 1
1E c

j LC j C j C j C
R j C L C


  

 

   
       

      
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01
1 22

2 0 0 2

1 1 1[ ] 1 1
1c E

j LCD j C j C
Cc j C L C R j Cc


 

  

       
                        (79) 

1 2

1 2

V VA B
I IC D
    

            (80) 

1 2 2V AV BI   (81) 

1 2 2I CV DI   (82) 

2 0

1

1
in

I

V AZ
I C



 
  
   (83) 

Where: 

1 nI i  (84) 

2 1mI g V   (85) 

The equivalent input noise voltage due to the input noise current, 1 nI i , is 

2 0

1
1 1 1

1

( ) ( )( )
( ) ( )n in n

I

V A Av I Z I I i
I C C

 


 


     
        

      (86) 

The input noise voltage ( )nv   will produce two narrowband (1 Hz) uncorrelated components in the 

frequency domain located at 0   and 0  as 
 

0
( )nv

  


   and 
 

0
( )nv

  


  . 

In presence of the two uncorrelated components of the input noise voltage, 
 

0
( )nv

  


   and 

 
0

( )nv
  


  , the peak carrier signal of amplitude Vc at frequency 0   is modulated with an input 

phase noise signal ( )
in

S   . 

The input phase noise spectral density at an offset of   is 

   
0 0

2 2

2

( ) ( )
( )

( )in

n n

c

v v
S

V

     



 




   





 

 (87) 
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 
2

2

2 ( )
( )

( )in

n

c

v
S

V






  

 (88) 

   
2 2 2

2 2 2

2 ( ) ( ) ( )
( ) 2

( ) ( ) ( )in

n n

c c

v i A
S

V V C


  


  
   

 (89) 

2
n ini S f 

 (90) 

2

1
n in

f Hz
i S

 


 (91) 

2

2 2

( )
( ) 2

( ) ( )in

in

c

ASS
V C






 
  

 (92) 

where inS  and in
S   are the input noise power and phase noise spectral density. 

Based on [33, 34], 
2

0
2

1( ) ( ) 1
( ) 2out in

L

S S
Q 


 


 

  
    
     (93) 

0

0
0( )

2L
dQ
d  

 
 

 

 

 (94) 

The open loop gain is 

open 0
0

( )
( )

mgG
C

 


 
    

   (95) 

For sustained oscillation 
0open 0

0

( ) 1... 1 ( )
( )

mgG C
C    




 
     

   is real and negative. 

0 Real 0 Imag 0( ) ( ) ( )C C jC     (96) 

Imag 0( ) 0C    (97) 

Real 0( ) mC g    (98) 
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0 0

Imag

Real 0

( )1
( )

dCd
d C d   



   

  
    

       (99) 

0

0
0( )

2L
dQ
d  

 
 

 

 

 (100) 

0

Imag0
0

Real 0

( )1( )
2 ( )L

dC
Q

C d
 


 

 


 
   

   (101)  

out in

0

2

Real 0
2

Imag

( )1( ) ( ) 1
( )( )

CS S
dC

d

 

 


 





 



  
  
         
   
      (102) 

in

2

2 2

( )
( ) 2

( ) ( )
in

c

ASS
V C






 
  

 (103) 

out

0

2

2
0

Real 0in
22 2

Imag0 0

( ) ( )1( ) 2 1
( )( )( ) ( )c

A CSS
dCV C

d



 

 


 






  
  
        
   
      (104) 

We now perform the noise analysis of the Colpitts oscillator. 

 

Individual Contribution of all Four Noise Sources 

The following contribute to the noise of the oscillator: 

 Thermal noise associated with the loss resistance of the resonator, 

 Thermal noise associated with the base resistance of the transistor, 

 Shot noise associated with the base bias current, and 

 Shot noise associated with the collector bias current. 

 

If we now use the oscillator circuit with a noisy resonator, we can calculate the total noise of the 

oscillator as shown in Figure 23. 
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Noise Shaping Function of the Resonator 

For phase noise analysis, the oscillator is considered as a feedback system and a noise source is present 

in the input as shown in the Figure 24. 

+
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Unity gain feedback oscillator

Non-unity gain feedback oscillator

 
 

 

Oscillator output phase noise is a function of 

The amount of the source noise present at the input of the oscillator circuit, and 
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The amount the feedback system rejects or amplifies various noise components. 

The unity-gain system closed loop transfer function is 

 closed-loop

( ) ( )( )
( ) 1 ( )

Y j H jTF j
X j H j

 


 
 

  (105) 

 
0

( ) 1H j
 




 
 (106) 

For frequencies close to       the open loop transfer function is 

 
0

0
( )( ) ( ) dH jH j H j

d  


  

 

 
  
   (107) 

The noise transfer function is 

0

0

( )( )( )
( )( ) 1 ( )

dH jH jY j j d
dH jX j j H j

d


 

  
   



 
    

   
      

   (108) 

Since 0( ) 1H j    and for most practical case 
( ) 1dH j

d






, we can write 

( ) 1
( )( )

Y j j
dH jX j j

d

 

  


 
    

   
    

   (109) 

From the noise transfer function it appears that the noise component at 0      is multiplied by the 

term 

1
( )dH j

d





 
 
 
 
  , 

relative to the output. 

The broadband white noise is shaped by the resonator as seen in Figure 3.25. 
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0f  0ff ff

    

 
 

 

Therefore, the noise power spectral density can be explained as 
2

2
( ) 1

( )( )
Y j j

dH jX j j
d

 

  


  


 


 (110) 

for ( ) ( )exp[ ( )]H j A j j j     (111) 

( ) ( ) ( )( ) exp[ ( )]dH j dA j d jjA j j j
d d d

   
  

  

 
  
   (112) 

Assume 0     , 0  , and 0( ) 1A j   then the above equation is reduced to 

0

2

2 2
2

( ) 1
( ) ( ) ( )( )

Y j j
X j j dA j d j

d d
  

 

    


 
 

 
 

   
                        (113) 

The open loop QL becomes 

2 2
0 ( ) ( )

2L
dA j d jQ

d d
   

 

   
    

     (114) 

and 

0

2 2
0

22 2
2

( ) 1 1
( ) 4( ) ( )( ) L

Y j j
X j j QdA j d j

d d
  

 

    


 
 

 
 

     
                            (115) 
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For the LC resonator 

( )dA j
d




 
 
   at resonance  0   becomes zero and 

0

2L
dQ
d

 




. 

 Non-Unity Gain 

For the non-unity gain feedback case where 1 2( ) ( ) ( )H j H j H j    it follows that 

0

( ) 1
( )( )

Y j j
dH jX j j

d
  

 

  


 

 
    

   
    

   (116) 

and 

1 01

0

( )( )
( ) 1 ( )

H jY j
X j H j



 


  (117) 

then the noise power is shaped by the transfer function as 
2 2

11
2

2

( )( )
( ) ( )( )

H jY j j
X j j dH j

d

 

  




 


 


 (118) 

For the lossy RLC resonator see Figure 26. 
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Noise Response to the RLC-Resonator
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0

out 0 0
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( ) 1 1( )
( ) 2n L
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i g Q

  

  
 

  
 

        
                   (119) 
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1

P

g
R



,  (120) 
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where RP is the equivalent loss resistance of the resonator. 

 

 Noise Transfer Function and Spectral Densities 

The noise transfer function for the relevant sources is described in this section. 

Noise transfer function of the thermal loss resistance of the resonator: 

 𝑁𝐹𝑇𝑖𝑛𝑟(𝜔0) =
1

2
[

1

2𝜔0𝐶𝑒𝑓𝑓
] [

𝜔0

Δ𝜔
] → (121) 

Noise transfer function of the transistor's base resistance noise: 

𝑁𝐹𝑇𝑉bn 
(𝜔0) =

1

2
[
𝐶1 + 𝐶2

𝐶2
] [

1

2𝑄
] [

𝜔0

Δ𝜔
] → (122) 

Noise transfer function of the transistor’s base current flicker noise: 

𝑁𝐹𝑇𝑖𝑖𝑛
(𝜔0) =

1

2
[

𝐶2

𝐶1+𝐶2
] [

1

2𝜔0𝑄𝐶𝑒𝑓𝑓
] [

𝜔0

Δ𝜔
] → (123) 

Noise transfer function of the transistor’s flicker noise: 

𝑁𝐹𝑇𝑖𝑓𝑛(𝜔0) =
1

2
[

𝐶2

𝐶1+𝐶2
] [

1

2𝜔0𝑄𝐶𝑒𝑓𝑓
] [

𝜔0

Δ𝜔
] → (124) 

Noise transfer function of the collector current shot noise: 

𝑁𝐹𝑇𝑖𝐶𝐶𝑛
(𝜔0) =

1

2
[

𝐶1

𝐶1+𝐶2
] [

1

2𝜔0𝑄𝐶𝑒𝑓𝑓
] [

𝜔0

Δ𝜔
] → (125) 

Where: 

1 2

1 2
eff

C CC C
C C

 
  (126) 

0 0( ) ( )o beV nV   (127) 

0( )inNFT  , 0( )
bnVNFT  , 0( )

bniNFT   and 0( )
CniNFT   are the noise transfer functions as explained. 

The various noise sources of the oscillator circuit whereby the flicker noise current is added to the base 

current and their noise spectral density is 

AF
f b

m

K I
f . 
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4[ ]inr
P

KTNSD
R

 

 noise spectral density of the thermal noise current from the loss resistance of the 

resonator 

[ ] 4Vbn bNSD KTr  noise spectral density of the thermal noise voltage from the base resistance 

[ ] 2ibn bNSD qI   noise spectral density of the shot noise current from the base current 

[ ]
AF

f b
ifn

m

K I
NSD

f
 

 Noise spectral density due to 1/f- flicker noise 

[ ] 2icn cNSD qI   noise spectral density of the shot noise current from the collector current 

The phase noise contribution now is: 

 
2

0 noise-source noise-source 0( ) [ ] ( )PN NSD NFT     (128) 

 
2

0 0
4( ) ( )inr inr

P

KTPN NF
R

   

 (129) 

 
2

0 0( ) 4 ( )Vbn b VbnPN KTr NF     (130) 

 
2

0 0( ) 2 ( )ibn B ibnPN qI NF     (131) 

 
2

0 0( ) ( )
AF

f b
ifn ibn

m

K I
PN NF

f
   

 (132) 

 
2

0 0( ) 2 ( )icn c icnPN qI NF     (133) 

where )( 0  PN is the phase noise at the offset frequency   from the carrier frequency 0  and  

sourcenoiseNSD ][  is the noise spectral density of the noise sources.  The phase noise contribution is 
 

PN𝑖𝑛𝑟(𝜔0 + Δ𝜔) =
4𝐾𝑇

𝑅𝑃
[NFT𝑖𝑛𝑟(𝜔0)]2 =

4𝐾𝑇

𝑅𝑃
{

1

2
[

1

2𝜔0𝐶eff
] [

𝜔0

Δ𝜔
]}

2

 phase noise contribution from the 
resonator tank. 
 

PN𝑉𝑏𝑛(𝜔0 + Δ𝜔) = 4𝐾𝑇𝑟𝑏[NFT𝑉𝑏𝑛(𝜔0)]2 = 4𝐾𝑇𝑟𝑏 {
1

2
[

𝐶1+𝐶2

𝐶2
] [

1

2𝑄
] [

𝜔0

Δ𝜔
]}

2

 phase noise contribution 
from  the base resistance. 
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PN𝑖𝑏𝑛(𝜔0 + Δ𝜔) = 2𝑞𝐼𝑏[NFT𝑖𝑏𝑛(𝜔0)]2 = 2𝑞𝐼𝑏 {
1

2
[

𝐶2

𝐶1+𝐶2
] [

1

𝜔0𝑄𝐶eff
] [

𝜔0

Δ𝜔
]}

2

 phase noise contribution 
from  the  base current. 
 

PN𝑖𝑓𝑛(𝜔0 + Δ𝜔) = (
𝐾𝑓𝐼𝑏

𝐴𝐹

𝑓𝑚
) [NF𝑖𝑏𝑛(𝜔0)]2 =

𝐾𝑓𝐼𝑏
𝐴𝐹

𝑓𝑚
{

1

2
[

𝐶2

𝐶1+𝐶2
] [

1

2𝜔0𝑄𝐶eff
] [

𝜔0

Δ𝜔
]}

2

→ phase noise 
contribution from  the  flicker noise of the transistor. 
 

PN𝑖𝑐𝑛(𝜔0 + Δ𝜔) = 2𝑞𝐼𝑐[NFT𝑖𝑐𝑛(𝜔0)]2 = 2𝑞𝐼𝑐 {
1

2
[

𝐶1

𝐶1+𝐶2
] [

1

2𝜔0𝑄𝐶eff
] [

𝜔0

Δ𝜔
]}

2

 phase noise 
contribution from  the collector current. 
 
The total effect of all the four noise sources can be expressed as 
PN(𝜔0 + Δ𝜔) = [PN𝑖𝑛𝑟(𝜔0 + 𝜔)] + [PN𝑉𝑏𝑛(𝜔0 + 𝜔)] + [PN𝑖𝑏𝑛(𝜔0 + 𝜔)] + [PN𝑖𝑐𝑛(𝜔0 + 𝜔)] 

  

PN(𝜔0 + Δ𝜔) =
4𝐾𝑇

𝑅𝑃
{

1

2
[

1

2𝜔0𝐶eff
] [

𝜔0

Δ𝜔
]}

2

+ 4𝐾𝑇𝑟𝑏 {
1

2
[

𝐶1+𝐶2

𝐶2
] [

1

2𝑄
] [

𝜔0

Δ𝜔
]}

2

+ [2𝑞𝐼𝑏 +

2𝜋𝐾𝑓𝐼𝑏
𝐴𝐹

Δ𝜔
] {

1

2
[

𝐶2

𝐶1+𝐶2
] [

1

2𝑄𝜔0𝐶eff
] [

𝜔0

Δ𝜔
]}

2

+ 2𝑞𝐼𝑐 {
1

2
[

𝐶1

𝐶1+𝐶2
] [

1

2𝜔0𝑄𝐶eff
] [

𝜔0

Δ𝜔
]}

2

  

Where: 

Kf  = flicker noise constant 

AF = flicker noise exponent 

1 2

1 2
eff

C CC C
C C

 
  (136) 

Note: The effect of the loading of the Q of the resonator is calculated by the noise transfer function 

multiplied with the noise sources. 

The phase noise contribution from the different noise sources for the parallel tuned Colpitts oscillator 

circuit at 10kHz 2π   from the oscillator frequency 0 100MHz2π   will next be computed. 

Circuit parameters are as follows: 

Base resistance of transistor rb = 6.14 ohm. 

Parallel loss resistance of the resonator RP = 7.54E11 ohm 

Q of the resonator = 60,000 

Resonator inductance = 15 mH 

Resonator capacitance = 2.7 pF 

Collector current of the transistor Ic = 13 mA 
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Base current of the transistor Ib = 130 µA. 

Flicker noise exponent AF = 2 

Flicker noise constant Kf = 1E-11 

Feedback factor n = 6 

Comparing phase noise at 100 Hz and phase noise at 10 kHz, 

 0 100Hz 162 dBc/Hz inrPN       0 10kHz 202dBc/HzinrPN      

 0 100Hz 176dBc/HzVbnPN       0 10kHz 216 dBc/HzVbnPN      

   0 100Hz 140 dBc/Hzibn ifnPN 


       0 10kHz 200 dBc/Hzibn ifnPN 


    

   0 100Hz 148 dBc/HzicnPN         0 10kHz 189 dBc/HzicnPN      

Note: The noise contribution from the resonator at this offset is the same as the flicker noise contribution 

from the transistor. 

It appears that the flicker noise and the noise from the resonator are the limiting factors for the overall 

phase noise performance of the oscillator circuit. 

The dependence of the phase noise performance due to different noise sources present in the oscillator 

circuits are 

0
1( )imr

P

PN
R

  

 (137) 
2

1
0

2

1( ) 1Vbn b
CPN r

Q C
 

   
    

     (138) 
2

2
0

1 2

1( )ibn b
eff

CPN I
QC C C

 
   

     
     (139) 

2

1
0

1 2

1( )icn c
eff

CPN I
QC C C

 
   

     
     (140) 

Once the resonator Q is known (parallel loss resistance is fixed) then the only option left is to select a 

device having a low flicker noise. The base resistance, current, and collector current add little to the 
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performance! Finally, optimization of the phase noise can be done by proper selection of the feedback 

capacitor under the constraints of the loop gain so that it maintains oscillation. 

The value of ‘n’ is defined as  1 1/ 2C C . Table 3 shows the resulting phase noise of a 100 MHz 

crystal oscillator. 

 

Table 3 Phase Noise as a Function of Feedback Factor n 

 1 1/ 2n C C   Resulting PN at 100 Hz Resulting PN at 10kHz 

2 –130 dBc/Hz –190 dBc/Hz 

3 –136 dBc/Hz –193.4 dBc/Hz 

4 –140 dBc/Hz –193.4 dBc/Hz 

5 –142 dBc/Hz –193.4 dBc/Hz 

6 –144 dBc/Hz –193.4 dBc/Hz 

7 –146 dBc/Hz –193.4 dBc/Hz 

 

Interesting enough, the far out noise is not affected, but the close-in noise is. The reason for this is that 

the larger the C1 becomes, the more it short-circuits the transistor noise, to the point where the feedback 

is no longer is large enough for oscillation. There is a limit for how large ‘n’ can be made as one has to 

consider tolerances in the components and also the temperature-dependence; 7, seems to be a reasonable 

value, for this particular transistor. The value of n would have to be recalculated for different transistor 

and frequency of oscillation. 

Figure 27 illustrates the negative impedance calculation. The capacitance ratio based on an open loop 

gain of 6 and calculations of Y21 (0.225) and the DC (100 mV) offset based on the Bessel function is 6. 
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The simulation confirms that oscillation occurs at the correct frequency and the phase noise, as shown in 

Figure 28 and Figure 29, is attractive. 
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Now a numerical example  

 Design Example of an Oscillator for Best Phase Noise and Good Output Power 
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Requirements: 

 output power requirement: 13 dBm  

 operating frequency: 1000 MHz 

 load: 50  

 phase noise –124 dBc/Hz @10KHz 

 

Design Steps 

 

Step 1:  
 
Calculation of the operating point for a fixed, normalized drive of x = 20 (high output power), see Table 

6-1. 

  

Based on output power requirement, the following is calculated. 

 

The oscillator output voltage at the fundamental frequency is 

 

VERPV Loutout 414.15023202)()( 00      (C-1) 

 

The fundamental current is 

 

mAVI out
out 3.28

50
414.1

50
)(

)( 0
0 




   (C-2) 

 

The DC operating point is calculated based on the normalized drive level x = 20. The expression for the 

emitter dc current can be given in terms of the Bessel function with respect to the drive level is 
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 
LevelDriveNormalizedx

DCE xI
xI

II












)(
)(

2)(
0

1
0

   (C-3) 
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For the normalized drive level x = 20, the output emitter current at the fundamental frequency can be 

given as 

 

      mA
xI
xIIIII

x
DCxExExE 56

)(
)(2)()()(

200

1
20022001200 















 (C-4) 

 

  mAII outxE 3.28)()( 02001 


  (output current to the load)    (C-5) 

 

Figure C-4 shows the oscillator circuit configuration in which DC and RF current distribution is shown 

and divided into its components.  
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Zin
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IE-DC
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Output
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      mAIII xExExE 3.27)()()( 20012002002 


   (C-6) 

 

 
mA

xI
xI

I
I

x

xE
DCE 3.28

)(
)(

2

)(

200

1

200




















    (C-7) 

 

For this application, the NE68830 was selected.   
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Step 2:  

 

Biasing circuit 

 

For the best phase noise close-in, a DC/AC feedback circuit is incorporated, which provides the desired 

operating DC condition [84]:  

IE=28.3mA 

VCE=5.5V, Supply Voltage Vcc=8V 

 =120 

IB0.23mA 

 

Step 3:  

 

Calculation of the large-signal transconductance. 

 

 
lfundamenta

dc
msignalel xI

xI
kTx
qIxGY 








 )(

)(2)(
0

1
arg21      (C-8) 

 

  107.0
520
949.1

021 







 

 mV
IY DCE



    (C-9) 

 
Step 4:  

 

Loop Gain. 

 
The loop gain is 
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
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


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
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   (C-10) 

 

  73.50||)( 0 circuitBiasRfR PPEQ     (C-11) 

 

As earlier derived, the loop gain should be 2.1 to have good starting conditions! 

 

523.2
1.2

73.50107.0
1.2

)(21














xYR
n PEQ

   (C-12) 

 
 
 
Step 5:  

 

Calculation of the feedback capacitor ratio. 

 
 

    523.1523.21
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Cn  (2.523 – 1)    (C-13) 

 

Step 6:  

 

Calculation of absolute values of feedback capacitor. 

 
 
The expression of inZ (Looking in to the base of the transistor) can be given as 
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(C-14) 

 
where  

 

CP = (CBEPKG  + contribution from layout) = 1.1pF 

 

  LP=(LB + LBX  + contribution from layout) = 2.2nH. 

 
 
The expression for the negative resistance nR  is 

 

])2.2()107.0()912(1[)1( 22222
21

2 nHE
R

LY
R

R n

P

n
neq







   (C-15) 
 
 

65.3
n

neq
RR        (C-16) 
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2

2021
2

21

)912(
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CCECC
Y

R
x

n










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    (C-17) 

 
 

nR  is the negative resistance without parasitics ),( PP LC . 

 
For sustained oscillation  neqR   2RPEQ   101.4 Ohm 

OhmRn 3714.10165.3       (C-18) 

 

26.7
371
107.01

221 


















CC      (C-19) 

 



 
 

163 
 

52.1
202

1 



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



xC
C      (C-20) 

 

pFC 3.31        (C-21) 

 

pFC 2.22        (C-22) 

 

Step 7:  

 

Calculation of the coupling capacitor re. 

 

The expression for the coupling capacitor is 

 




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

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   (C-23) 

 

 

pFCc 4.0       (C-24) 

 

 

Figure C-5 shows the transistor in the package parameters for the calculation of the oscillator frequency 

and loop gain. 
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. 

 

 

Tables C-1 and C-2 show NE68830 nonlinear parameters and package parameters which were taken 

from the NEC data sheets. 

 

 Table C-1  Nonlinear parameters 

Parameters Q Parameters Q 

IS 3.8E-16 MJC 0.48 

BF 135.7 XCJC 0.56 

NF 1 CJS 0 

VAF 28 VJS 0.75 

IKF 0.6 MJS 0 

NE 1.49 TF 11E-12 

BR 12.3 XTF 0.36 

NR 1.1 VTF 0.65 

VAR 3.5 ITF 0.61 
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IKR 0.06 PTF 50 

ISC 3.5E-16 TR 32E-12 

NC 1.62 EG 1.11 

RE 0.4 XTB 0 

RB 6.14 XTI 3 

RBM 3.5 KF 0 

IRB 0.001 AF 1 

RC 4.2 VJE 0.71 

CJE 0.79E-12 MJE 0.38 

CJC 0.549E-12 VJC 0.65 

  

Table C-2   Package parameters of NE68830 

Parameters NE68830 

CCB 0.24E-12 

CCE 0.27E-12 

LB 0.5E-9 

LE 0.86E-9 

CCBPKG 0.08E-12 

CCEPKG 0.04E-12 

CBEPKG 0.04E-12 

LBX 0.2E-9 

LCX 0.1E-9 

LEX 0.2E-9 
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Design Calculations  

1.  Frequency of Oscillation  

 

Frequency of the oscillation is  

 

MHz
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 (C-25) 

 

with  

 

L = 5nH (Inductance of the parallel resonator circuit) 

C1
*= 2.2pF 

C1= C1
*+CP  

CP=1.1Pf (CBEPKG + Contribution from layout) 

C2 = 2.2pF 

Cc = 0.4pF 
C =4.7pF 
RP=12000 (Measured) 

380









L
RQ P

unloaded
  
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The calculated phase noise at 10 kHz off the carrier is –124 dBc/Hz, which agrees with the measurements 

within 1 dB.  The other values are –140 dBc/Hz at 100 kHz offset and –160 dBc/Hz at 1 MHz offset.   

 
 The actual measured phase noise is shown next. 

 Considering that Equation (8-109) only contains shot and flicker noise, as well as resonator noise, it has 

been proven that this by itself is a very accurate formula for practical use.  Figure 9-5 has been generated 

from using Ansoft Designer, which includes all noise sources and is based on the harmonic balance 

principle.   

The important conclusion found in Chapter 8 is that for the first time we have a complete mathematical 

synthesis procedure for best phase noise that covers both flicker noise and white noise for the oscillator.  

In the past, most publications have referenced an oscillator built with many shortcuts and then the author 

found that the measured results agree with the expectations.  A complete synthesis approach has not 

appeared previously. 

    (A-21) 
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The important message that can be derived from this calculation is the fact that the parasitics now dominate 

the design.  The negative resistance which used to be proportional to 1/2 now is 1/4.  The rule of thumb 

is to use a large device for lower frequencies and operate it at medium DC currents.  This in the millimeter 

wave area would be fatal.  The large device would have excessive parasitic elements such as inductors 

and capacitors and the optimum design is no longer possible since the parasitics would be larger than the 

values required for optimum performance.  These parasitics are the major reason why at millimeter wave 

and wide tuning ranges the phase noise is not as good as what a narrowband Colpitts oscillator would 

provide.  

 

2000 MHz GaAs FET-Based Oscillator 

 

Low cost applications are frequently implemented as an RFIC.  For further validation, a GaAs FET-

based 2000 MHz Colpitts oscillator was designed and built.  Figure 9-11 shows the circuit diagram of 

the oscillator.  It uses a combination of transmission lines and rectangular inductors as resonators.  The 

inductor in the middle of the schematic in Figure 9-11, connected to a via hole, is needed as a DC return. 

If a tuning diode is connected to the capacitor on the left of the schematic in Figure 9-11, then a DC 

control voltage can be applied, and the center inductor becomes an RF choke. The output is taken from 

the source.  An additional external DC decoupling capacitor will be needed because of the DC coupling.  

The transistor and the circuit were constructed using the TriQuint GaAs Foundry and the transistor was 

optimized for the DC current.  Figure 9-12 shows the predicted phase noise of this oscillator. 
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It is interesting to examine the load line of this oscillator, which is shown in Figure 9-13.  This circuit is 

operated in a fairly linear range.   
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Figure 9-14 shows the layout of the 2 GHz GaAs FET oscillator.  Its output power is 1.8 dBm. 
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Now a detailed GaAs FET Oscillator Analysis 

 

An FET Published Example 

 

Figure D-5 shows a 950MHz MESFET oscillator circuit configuration based on the publication: 

K. Cheng, K. Chan, “Power Optimization of High-Efficiency Microwave MESFET Oscillators,” IEEE 

Transactions on Microwave Theory and Techniques, Vol. 48, No. 5, pp. 787 –790, May 2000. 

And the analytical approach used there for optimum operating conditions for maximum oscillator output 

power.  The analysis is based on a quasi-linear approach and is experimentally supported with the 

conversion efficiency of 54%, which is the maximum conversion efficiency published for this topology.  

However, the publication does not give any emphasis on the optimum phase noise, which is the key 

parameter for the oscillator design. 
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The main point of this section is to show a very thorough design procedure for the MES FET including 

optimization of the parameters for best performance. This is particular of interest as the author supplied 

measured data and not just simulation, and can show the amount of optimization. 

 

Power optimization of the GaAs-950MHz-MESFET oscillator: 

 

 

 

 

The derivation of the analytical expressions are based on the open loop model of the oscillator.  Figure D-

6 shows an equivalent circuit of the oscillator shown in Figure 6-46.  

 

Here are the SPICE parameters: 
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Z1 can be expressed as 
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Multiplying the numerator and the denominator by the conjugate yields: 
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The following assumptions are made for simplification purposes. 
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then modified Z1 can be represented as 
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defining the three new variables as 
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dsb CCC  2       (D-146) 
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Figure D-7 shows a simplified open loop model of the oscillator for easy analysis.  In this open loop 

model, the parasitic elements of the device are absorbed into the corresponding embedding impedances. 
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The circuit model of the oscillator is shown in Figure D-8, in which the output current through ZL is 

given as 
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The voltage across Zi is given as: 
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Applying the voltage divider in Figure D-8, Vgs can be expressed as 
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Steady-state oscillation occurs when Ids(t)=II and Vgs=Vp.  Consequently, the equation above can be 

written as  
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In addition, Vds can be determined by calculating Icb, the current through Cb with the help of Figure D-8. 
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Based on the last result we can conclude that 
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or in square magnitude form 
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Also, Re[ZL] can be defined as follows 
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The power delivered to the load ZL and the magnitude of Vds can be determined by 
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Based on the equations above, the output power can be estimated as 
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Below 5 GHz, it is valid to ignore some of the terms by assuming that 
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The power output is now expressed as 
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In a similar manner, Vds is given by 
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Both the output power and Vds depend on Cb if the other parameters are fixed. 

 

This is a limitation for the maximum value.  However, a maximum value of the current and the voltage a 

transistor can take before burn-out.  Therefore, by setting Vds= Vdsm give an optimal condition 

according to the author is given by 
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The optimum load impedance that the device needs to see to deliver the highest power is defined as  
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leading to the following definition 
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Using the result above, the optimum Pout is, therefore, given by 
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The first term is the power available from the current source and the second term is the power absorbed 

by Ra.  This also indicates that a high Q inductor minimizes the absorbed power, increasing the power 

available from the current source.  Pout simplifies further at the oscillation frequency since Xa0. 
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The above analytical analysis gives the following important results: 

 

1) Maximum output power is attained if we set 
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Accordingly, the DC/RF conversion efficiency is calculated by 
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In order to maximize the oscillator output power and efficiency, the loss resistance Ra of the input circuit 

has to be reduced (increasing G), and an optimal biasing condition VDS has to be selected. 
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3)  Combining the above equation leads to expressions for ZL in terms of  
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From these analytical calculations, the following results were achieved.  The circuit simulation of the 

oscillator done was using a nonlinear Materka model.   

 

 
 

 

 

Figure D-9 above shows the schematic diagram of a practical oscillator operating at 950 MHz.  A simple 

high-pass filter consisting of LT and CT is used to transfer the Z0/50 load to the required ZL value. 

 

From above expression all the effective components of oscillator can be given as: 

 

1.   Bias condition: 
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2.    Device Parameters: 
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3.   Device Parasitic: 
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5. Output matching circuit: 
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6.  Calculation of Ropt: 
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7.  Calculation of ZL: 
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8. Output power: 
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9. DC-RF conversion efficiency: 
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Simulated Results 

Figures D-10, D-11, D-12, D-13, D-14, and D-15 show the oscillator test circuit and its simulated 

results.  After the oscillator circuit is analyzed in the harmonic-balance program, the oscillator frequency 

is found to be 1.08 GHz, and some tuning is required to bring the oscillator frequency back to the 

required value by changing Ls from 3.9nH to 4.45nH.  The slight shift in the oscillator frequency may be 

due to the device parasitic. The simulated power output is 17.04 dBm, which is about the same as the 

measured value by [108].  The DC to RF conversion efficiency at the fundamental frequency is 55%.  

The calculation in [108], as well as the calculation here, assumes an ideal transistor.  By finding a better 

value between C1 and C2, the efficiency was increased to 64%, compared to the published result of 55%.  

This means that the circuit in [108] has not been properly optimized. 
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Taking the published experimental results into consideration, the analytical expression gives excellent 

insight into the performance of the oscillator circuit. 

 
The maximum achievable output power and efficiency for a given active device can be predicted through 

the closed-form expressions without the need of a large-signal device characterization and an HB-

simulation. This publication for has not addressed the power optimization and best phase noise, which is 

a very important requirement for the oscillator.  By proper selection of the feedback ratio at the optimum 

drive level, the noise is improved by 8 dB, keeping the output power approximately the same.  In Chapter 

8 we discuss fixing the optimum feedback ratio and the absolute values of the feedback capacitor, with 

consideration for the best possible phase noise. 

The design of the cross coupled oscillator 

Phase Noise in CMOS Differential LC Oscillators 

Ali Hajimiri Thomas H. Lee 

Stanford University, Stanford, CA 94305 
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2400 MHz MOSFET-Based Push-Pull Oscillator 

 

 
 

 

 

 
 

 

Wireless applications are extremely cost sensitive, and when implemented as an RFIC, they are designed 

using silicon technology.  Most mixers in RFIC’s are built on the principle of differential amplifiers 

(Gilbert cell) and require a phase and out of phase signal (symmetrical drive).  For these symmetrical 

requirements, this is best achieved using a push-pull technology with two outputs.  The design choices 

are SiGe transistors or BiCMOS transistors.  As will be seen, the critical phase noise is determined by 

the Q of the inductor and other elements of the resonator and by the flicker noise from the device. 

Here is some relevant literature 
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Systematic characterization for RF small-signal parameter extraction of 28 nm FDSOI MOSFETs 

up to 110 GHz 

https://www.sciencedirect.com/science/article/abs/pii/S0026269223001751?via%3Dihub 

 

Figure 8-23 shows the circuit of the 2400 MHz integrated CMOS oscillator 0.35um in cross-coupled 

(push-pull) configuration, the 0.35umsize was used for the numerical example and doesn’t not represent 

the state of the art! 

 

 
 

 

The circuit above uses a cross-coupled CMOS-NMOS pair as an oscillator.  The advantage compared to 

an all NMOS structure is that it generates a large symmetrical signal swing and balances out the pull-up 

and pull-down signals, resulting in a better noise.  This type of topology rejects the common mode noise 

and substrate noise.   

 

Figure 8-24 shows the starting condition which requires a negative resistance and a cancellation of the 

reactances at the frequency of oscillation.  The currents shown in Figure 8-25 indication that this condition 

is met.   

https://www.sciencedirect.com/science/article/abs/pii/S0026269223001751?via%3Dihub
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It is important to notice that the condition of zero reactance does not quite occur at the point of most 

negative current.  Since the circuit is totally symmetrical, only the condition C1 = C2 can be met (Section 

8.2).  C1 and C2 refer to the gate source capacitance of the field-effect transistors.  As outlined previously, 

this is not necessarily the best condition for phase noise. While the oscillator phase noise simulation was 

performed, the mathematically solution to determine the noise will follow 

 

Figures 8-25 and 8-26 show the predicted phase and RF output power, including harmonic contents.   
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Design Equations 

 

1. The transconductance. 

 

Figure 8-27 shows a cross-coupled PMOS and a cross-coupled NMOS pair using CMOS devices.  

 

According to the literature, PMOS transistors offer lower 1/f and thermal noise while NMOS transistors 

exhibit a higher fT and a higher transconductance for the same operating point. 

 

 

-2/gm-PMOS

-2/gm-NMOS
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PMOS PMOS
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The total transconductance is  
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with 

 

pK = transconductance parameter 

pmos = carrier mobility of the PMOS device 

nmos = carrier mobility of the NMOS device 

oxC = unit capacitance of the gate oxide 
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2. The transconductance parameter. 

 

The transconductance parameter is defined as 

 

oxp CK       (8-208) 

 

where  is the carrier mobility and oxC is the unit capacitance of the gate oxide. 

 

3.  The Gate-oxide capacitance of the device. 

 

The unit capacitance of the gate oxide oxC is given as 

 











ox

ii
oxox t

lw
C      (8-209) 

 

with  

 

ox   = permitivity  of the oxide  

 

      oxt   = thickness of the oxide layer between spiral and substrate 

      

     iw  = width of the spiral line 

 

      li  = length of the spiral line. 

 

 

4.  The drain current. 



 
 

201 
 

The drain current is  
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where )( thgs VV  is defined as  
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5.  The size of the device. 

 

The size of the device determines the transconductance of the transistor and the large signal 

transconductance needs to be large enough to sustain oscillation and compensate the losses of the 

resonator.  

 

The expression of the ratio of the channel width (gate) and channel length (gate) is  

 

dsp
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dsp

P

IK
g

IK
SG

L
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)2( 22

     (8-213) 

 

where w is the width of the channel (gate) and L is the length of the channel (gate) of the device. 

 

6.  The total equivalent resistance at resonant frequency. 
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Figure 8-28a and b show the equivalent cross-coupled oscillator resonant circuit and the corresponding 

equivalent resistances at resonance condition. 

 

 

Lresonator

CL CL
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The total equivalent parallel resistor at resonance frequency is  

 

)(2
2
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where NMOSmg  and PMOSmg   are the corresponding large signal transconductances of the NMOS and 

PMOS device. 



 
 

203 
 

For a symmetrical output signal, the large signal transconductance of the NMOS and PMOS transistors 

have to be ideally equal as mPMOSmNMOSm ggg    and the equivalent resistance at resonance condition is  
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1      (8-216) 

 

The differential negative resistance generated by the cross-coupled NMOS and PMOS transistors-pair 

compensates the parallel loss resistance PR of the resonator circuit. 

  

 

7.  Start-up Conditions 

 

For the start-up condition and guaranteed sustained oscillation condition, the value of TR  must be negative 

and 
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From the loop gain criteria using a stability factor of 2 (loop gain=2, the gain is adjusted to 1 by self-

adjusting the conducting angle of the circuit), the start-up condition is  
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     (8-218) 

 

where  
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P
P R

G 1
      (8-219) 

 

S = stability factor 

 

PR = Equivalent parallel loss resistance of the resonator. 

 

 

Design Calculations  

 

Parallel Loss Resistance of the Resonator 

 

The equivalent parallel loss resistance of the resonator is given as  

 

)10(101)1( 2  QforRRQR ssP    (8-220) 

 

where sR is series loss-resistance. 
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Where Q =10, nHLind 1.1  and mS
R

G
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Large Signal Transconductance 

 

  mS
E

EEE
L

IwK
g dsp

signallaurgem 435.27
635.0

)38.14(*)66.35(*)6250(*22








    (8-222) 

 



 
 

205 
 

Size of the Device 

 

The width of the CMOS is given as  
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For mL 35.0 ; mw 250  

 

where  

 

66.35  EK p  
 

mAIds 8.14  
 

mSGP 577.6  
 

2S   
 

Oscillation Frequency 

 

The frequency of the oscillation is given as 
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 CCCCC LPMOSNMOSkresonator  2
1
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where  

 

nmosdbnmosgsnmosgdNMOS CCCC   4     (8-227) 

 

 

pmosdbpmosgspmosgdPMOS CCCC   4     (8-228) 

 

For the cross-coupled configuration PairNMOSC   is the series combination of the two NMOSC and is given as  

 

nmosdbnmosgsnmosgdPairNMOS CCCC  
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Similarly, PairPMOSC    is the series combination of the two PMOSC  and is given as 
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 The capacitance of the resonator is given as 
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where  

 

LC  =10pF (Load capacitance) 

 

C= ½-Resonator- parallel capacitance 

 

MHz
EECL

f
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1
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1

tantan
0 
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 
  (8-232) 

 

where  

 

kresonatorL tan =1.1nH 

 

pFC kresonator 3.3tan   
 

 

 Phase Noise of the integrated CMOS oscillator  

 

The phase noise of CMOS oscillators has been subject to endless discussions.  The main contributors 

still are the resonant circuit with a low Q and the flicker frequency contribution from the device.  From 

Chapter 8 we take the following equations and adapt them to the CMOS device. 

 

The phase noise of CMOS oscillators has been subject to endless discussions. The main contributors still 

are the resonant circuit with a low Q and the flicker frequency contribution from the device. 

From [2,3], 
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→ phase noise contribution from the resonator. 

𝑃𝑁𝑉𝑔𝑛
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→ phase noise contribution from the gate resistance. 
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→ phase noise contribution from the gate current. 
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→ phase noise contribution from the flicker noise of the transistor. 
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→ phase noise contribution from the drain current. 

 

The total effect of all the four noise sources can be expressed as  

𝑃𝑁(𝜔0 + 𝜔) = [𝑃𝑁𝑖𝑛𝑟(𝜔0 + 𝜔)] + [𝑃𝑁𝑉𝑔𝑛(𝜔0 + 𝜔)] +

 [𝑃𝑁𝑡𝑔𝑛(𝜔0 + 𝜔)] + [𝑃𝑁𝑡𝑗𝑛(𝜔0 + 𝜔) + [𝑃𝑁𝑡𝑑𝑛(𝜔0 + 𝜔)]
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    (20) 

where 

𝐾f = Flicker noise constant, 𝐴𝐹 = Flicker noise exponent. 

𝐶𝑒𝑓𝑓 = 𝐶 +
𝐶1𝐶2

𝐶1 + 𝐶2
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The following values were used for the calculation of the phase noise. 

 

Rp= 190 

f0 = 2.4 GHz 

L = 1.1nH 

CO = 2pF 

C1 = C2 =0.2pF 

n = 2 

Ig = 100A 

Id = 14mA 

AF = 2 

KF = 5E-5 

q = 1.6E-19 

T = 290 K 

 

and the following contributions were obtained at 1 MHz offset 

 

PN1 = -117.78 dBc/Hz 

PN2 = -146.37 dBc/Hz 

PN3 = -123.4 dBc/Hz 

PN4 = -140.9 dBc/Hz 

 

These calculations show that the phase noise contribution from the tuned circuit dominates and sets the 

value at –117.78 dBc/Hz.  

 

The circuit was then analyzed using Microwave Harmonica/Ansoft Designer, using a lossy circuit with a 

Q0 of 10 and using the SPICE-type parameters which were obtained from the manufacturer. 
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The output power measured single-ended was –7 dBm.  Figure 8-29 shows the simulated output power 

and harmonic contents.  The accuracy of the prediction is within 1 dB. 

 

 

 
 

 

Besides the cross coupled oscillator the Colpitts oscillator is always a good reference. 

 



 
 

211 
 

 
 

 

This is a typical lossy LMOS based design. 
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Figure 8-30 shows the predicted phase noise from Designer and the phase noise prediction from the set 

of equations shown above.  It should be pointed out that close-in the flicker noise contribution 
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dominates, in the medium range, the resonator Q dominates and for high currents, the drain current adds 

significant noise.   

 

 
 

 

This approach has shown a very good agreement between the simulations and calculations as 

demonstrated.  The following table shows a list of oscillators implemented in various technologies.  It is 

apparent from the list that this design is state-of-the-art.  The publications, which cover this topic, have 

analyzed various other contributions, both from the transistor and the tuning mechanism.  When FETs are 

used as varactors, the average Q is in the vicinity of 30, which means that the low Q inductor still is 

responsible for the overall phase noise.  The three areas of improvement are the power supply voltage, the 

Q, and the device selection.  So far, the power supply voltage has not been addressed, however, latest 

designs operating at 1.5V show a poorer noise performance.  Their distinct trade-offs and the application 

dictates if such degradation is allowable. 
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This equation is extremely significant because it covers most of the causes of phase noise in oscillators. 

[AM-to-PM conversion must be added; see (5-56).] To minimize the phase noise, the following design 

rules apply: 

 

1. Maximize the unloaded Q. 

 

2. Maximize the reactive energy by means of a high RF voltage across the resonator and obtain a low LC 

ratio. The limits are set by breakdown voltages of the active devices and the tuning diodes, and the 

forward-bias condition of the tuning diodes. If L becomes too high, the circuit degenerates into a squegging 

oscillator. Using lower L allows larger capacitance, which allows us to swamp the oscillating device's 

internal, nonlinear capacitance with external, linear capacitance, reducing the phase-noise degradation 

caused by the nonlinear capacitance. The ceramic-resonator oscillator best illustrates this approach, which 

may be hard to accomplish in discrete circuits because high-Q inductors with values above 1 nH cannot 

be built unless high-Q transmission lines or resonators are used. 

 

3. Avoid saturation at all cost, and try to either have limiting or automatic gain control (AGC) without 

degradation of Q. Isolate the tuned circuit from the limiter or AGC circuit. Use tuning diodes in antiseries 

configurations to avoid forward bias. 

 

4. Choose an active device with the lowest possible noise figure and flicker corner frequency. The noise 

figure of interest is the noise figure obtained with the actual impedance at which the device is operated. 

Using FETs rather than BJTs, it is preferable to deal with the equivalent noise voltage and noise currents 

rather than with the noise figure, since they are independent of source impedance. The noise figure 

improves as the ratio between source impedance and equivalent noise resistance increases. In addition, in 

a tuned circuit, the source impedance changes drastically as a function of the offset frequency, and this 

effect has to be considered. For low phase-noise operation, use a medium-power transistor. If you need 

your output power to be achieved at 6 - 9 mA, select a transistor with an ICmax of 60 - 90 mA. Also avoid 

an fT greater than 3 - 5× the operating frequency. To make transistors that are stable across their full 

frequency ranges, manufacturers add circuitry that makes the flicker corner frequency higher as fT 

increases. 
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 Appendix 

  
 A Solution for Calculating Phase Noise in Oscillators 

 
The following appendix address various important calculation issues on noise.  The mathematical solution 

(Compact Software) paid for, was developed between Prof. Rizzoli and team from the University of 

Bologna, Prof. Fred Rosenbaum, and Rowan Gilmore from the University of Washington, St. Louise, and 

my team at Compact Software, where we introduced the world’s first harmonic balance mathematics based 

simulator, that could handle nonlinear noise generated by semiconductors in amplifiers, frequency 

doublers, mixers and finally oscillators. It didn’t take a long time until Keysight (at the time Hewlett 

Packard) and others followed. The drawback of a University Professor is that one has to publish many of 

the findings which invites these findings to be copied. 

 

The noise and oscillators has already been discussed, but since many publications, which have been 

referenced, omitted a lot of important steps, it is difficult to follow the noise concept.  The noise discussion 

has two aspects.  One is a physics-based aspect and one is a mathematic-based aspect.  Previously the 

noise has been explained from a physics point of view, while all the necessary mathematical tools are now 

presented here.  The mechanism that adds the noise, both close-in noise and far-out noise, to the carrier 

will be mathematically described here.  The resulting noise figure, under large signal condition, is an 

important issue.  When modeling the transistors, typically the noise correlation is incomplete.  This 

portion, which deals with the inner transistor, was already shown, 

There are two important linear noise models which are necessary to understand the SSB noise.  One is the 

Leeson phase noise equation and the other is based on the Lee and Hajimiri noise model.  The noise theory 

can be divided into modulation noise and conversion noise.  All of this will be explained in detail. 

 

General Analysis of Noise Due to Modulation and Conversion in Oscillators 
 

The equations E-1 to E-93 are from the book, The Design of modern Microwave Oscillators for Wireless 

Applications, Ulrich L. Rohde, Ajay K. Poddar, and Georg Boeck 2005 
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The degree to which an oscillator generates constant frequency throughout a specified period of time is 

defined as the frequency stability of the oscillator. The cause of frequency instability is due to the presence 

of noise in the oscillator circuit that effectively modulates the signal, causing a change in frequency 

spectrum commonly known as phase noise. 

The unmodulated carrier signal is represented as  

 

)2cos()( 0  tfAtf c      (E-1) 
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     (E-3) 

 

For the case of an unmodulated signal, fc is constant and is expressed by the time derivative of the phase 

(angle-), but in general, this derivative is not constant and can be represented as an instantaneous 

frequency, which can vary with time and is expressed as 







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dt
df i

i


2
1  and the corresponding phase is 

determined as dtft ii   2)( . For the unmodulated-carrier )2()( 0  tft ci , where 
00 )(




ti t . 

 

The phase/angle of the carrier can be varied linearly by the modulating signal m(t), which results into 

phase modulation as i(t).  

 

)(2)( tmktft pci         (E-4) 

 

kp is defined as phase sensitivity and its dimension is given as radians per units of the modulating signal 

and the instantaneous frequency i of the carrier is modified by modulation with the modulating signal 

as   
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     (E-5) 

 
The phase-modulated signal can be expressed in time domain as  

 

)](2cos[)( tmktfAts pcc        (E-6) 

 

Modulation by a Sinusoidal Signal 

 

Consider a sinusoidal modulating signal given by )2cos()( tfAtm mm  and the instantaneous frequency 

of the modulated signal is given as  

 

)2cos()( tfAkftf mmfci       (E-7) 

 

)2cos()( tffftf mci       (E-8) 

 

mf Akf        (E-9) 

 

f is defined as the frequency deviation corresponding to the maximum variation of the instantaneous 

frequency of the modulated signal from the carrier frequency.  The angle of the modulated signal is 

determined by integration as  
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The coefficient of the sine term is called the modulation index of the modulating signal, and is denoted by 

mf
f

 .   The expression for the angle of the modulated signal can be written as 

)2sin(2)( tf
f
fft m
m

ci 


  and the time representation of the modulated signal can be expressed as  
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)(t is the complex envelope of the frequency modulated signal and can be given as )2sin()( tfj
nc

meAt    

and it is a periodic function of time with a fundamental frequency equal to the modulating frequency fm, 

and can be expressed as 
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nC is Fourier coefficient given as 
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tfx m2 , and the expression of coefficients may be rewritten as dxe
A

C nxxjc
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2
, and this 

equation is called nth order Bessel function of the first kind with the argument .   

 

The expression for )(t  and )(ts  is given as  
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Applying a Fourier transform to the time domain signal )(ts results in an expression for the discrete 

frequency spectrum of )(ts as 
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The spectrum of the frequency-modulated signal has an infinite number of symmetrically located 

sideband components spaced at frequencies of fm, 2fm, 3fm..nfm around the carrier frequency.   The 

amplitude of the carrier component and the sideband components are the products of the carrier 

amplitude and a Bessel function.  

 

Modulation by a Noise Signal 

 

Considering a noise signal defined as )](2cos[)()( ttftrtn ncn    introduced to an oscillator circuit 

in a random fashion and the desired oscillator output signal is represented by )2cos()(   tfAtf c . 

)(trn  is the coefficient of the noise signal having a Rayleigh distribution and functions of a noise signal.  

The phase )(tn  is linearly distributed and a distribution function of a noise signal.  The output of the 

oscillator circuit is given as the superposition of the combined signal, which is expressed as 
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where 
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The phase term )(te is a time-variant function and can be represented as 
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For large signal to noise ratio (SNR), )(te can be approximated as 
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and the oscillator output signal can be expressed as 
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which is phase modulated due to the noise signal n(t), and the resultant oscillator output signal contains 

modulation sidebands due to noise present in the circuit, which is called phase noise.  

 

The amplitude of a phase modulation sideband is given by the product of the carrier amplitude and a 

Bessel function of the first kind and can be expressed as 
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)( fL is phase noise due to noise modulation, SSBA  is the sideband amplitude of the phase modulation at 

offset f from the carrier and nBW  is the noise bandwidth in hertz.  
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 Oscillator Noise Models 

At present, two separate, but closely related models, of the oscillator phase noise exists. The first is 

proposed by Leeson (1966), referred to as Leeson’s model and the noise prediction using Leeson’s model 

is based on time-invariant properties of the oscillator such as resonator Q, feedback gain, output power, 

and noise figure.   This was shown in Chapter 7. 

 

Leeson has introduced a linear approach for calculation of oscillator phase noise and his noise formulae 

was extended by Rohde by adding  2

2
02

mf
kTRK

 [75]. 

 

Modified Leeson’s Phase-Noise Equation 
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L  (fm) = SSB noise power spectral density  defined as ratio of sideband power in 1-Hz bandwidth at fm to 

total power in dB, unit is dBc/Hz. 

 

fm = frequency offset 

 

f0 = center frequency 

 

fc = flicker frequency- region between 1/f3-1/f2 

 

QL = loaded Q of the tuned circuit 

 

Q0 = unloaded Q of the tuned circuit 
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F = noise figure of the oscillator 

kT = 4.1  10-21 at 300 K0 (room temperature) 

 

Psav = average power at oscillator output 

 

R=equivalent noise resistance of tuning diode 

 

K0= oscillator voltage gain 

 

The last term of the Leeson’s phase-noise equation is responsible for the modulation noise.  

 

Shortcomings of the Modified Leeson Noise Equation 

 

F is empirical, apriori, and difficult to calculate due to Linear Time Variant (LTV) characteristics of the 

noise. 

 

Phase noise in 1/f3 region is an empirical expression with fitting parameters. 

 

Lee and Hajimiri Noise Model  

 

The second noise model was proposed by Lee and Hajimiri, which is based on the time-varying properties 

of the oscillator current waveform [64] [T. Lee…. Must reference].  

This very nice model, unfortunately gives no insight in the contribution of the semiconductor used and 

only the flicker noise is discussed, as shown below. All the other noise sources for either the bipolar 

transistor or the variation of the FET are not considered. 

The phase noise equation for the 1/f3 region can be expressed as 
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and the phase noise equation for the 1/f2 region can be expressed as 
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where  

 

C0  : coefficient of Fourier series, 0th order of the ISF. 

 

in : the noise current magnitude. 

 

f: noise bandwidth. 

 

1/f : 1/f noise corner frequency of the device/transistor. 

 

qmax: maximum charge on the capacitors in the resonator. 

 

(rms): is the rms value of the ISF. 

 

 

Shortcomings of the Lee and Hajimiri Noise Model 

 

ISF function is tedious to obtain and depends upon topology of the oscillator. 

 

Mathematical, yet lacks practicality. 

 

1/f noise-conversion is not clearly specified. 
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Modulation and Conversion Noise 

 

Modulation noise is defined as the noise that is generated by actually modulating the oscillator due to 

tuning diode. The noise associated with the series loss resistance in the tuning diode will introduce 

frequency modulation, which is further translated into the oscillator phase noise and this portion of the 

noise is responsible for the near-carrier noise.  There is an additional phenomenon called conversion noise, 

which produces noise in a manner similar to the mixing process.  

 

The Nonlinear Approach for the Computation of the Noise Analysis of Oscillator Circuits 

 

The mechanism of noise generation in autonomous circuits and oscillators combines the equivalent of 

modulation and frequency conversion (mixing) with the effect of AM to PM conversion [70, 109]. 

 

Traditional approaches relying on frequency conversion analysis are not sufficient to describe the complex 

physical behavior of a noisy oscillator. The accuracy of this nonlinear approach is based on the dynamic 

range of the harmonic-balance simulator and the quality of the parameter extraction for the active device.  

 

Figure E-1 shows a general noisy nonlinear network, which is subdivided into linear and nonlinear sub-

networks and noise-free multi-ports.  Noise generation is accounted for by connecting a set of noise 

voltage and noise current sources at the ports of the linear and nonlinear sub-network. It is assumed that 

the circuit is forced by DC source and a set of sinusoidal sources located at the carrier harmonics k0 and 

at the sideband +k0. 

 

The electrical regime under this condition of the autonomous circuit will be quasi-periodic, and the 

nonlinear system to be solved is formulated in terms of the harmonic balance error vector E, defined as 

the difference between linear and nonlinear current harmonics at the common ports of the circuits.  
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The solution of this nonlinear algebraic system can be expressed in the form as 

 

    FXXE HB ),(      (E-47) 

 

HBHB EEXXE ,),(      (E-48) 

  

where 

 

F= Forcing term comprises of DC, harmonics and sideband-excitations 

 

XB= State-variable vectors (SV) consists components at sideband 

 

 XH= State-variable vectors (SV) consists components at carrier harmonics 

 

E=Vector of real and imaginary parts of all HE-errors 
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 EB=Error sub-vector due to sideband 

 

EH=Error sub-vector due to carrier harmonics 

 

Under autonomous (noiseless) steady state conditions, the forcing term F contains only DC excitations 

and the possible solution for nonlinear algebraic system FXXE HB ),(  will have the form as 

 

0BX       (E-49) 

 

statesteadyXX ss
HH        (E-50) 

 

Since the system is operating under autonomous conditions, the phase of the steady state will be arbitrary, 

and the carrier frequency 0 represents one of the unknowns of the nonlinear algebraic system above 

FXXE HB ),( ; so that one of the harmonics of the vector HX  is replaced by 0. 

 

Now, let us assume that the steady state condition of the autonomous (noiseless) circuit is perturbed by 

set of small-signal noise sources generated inside the linear/nonlinear sub-network ports of the circuit; 

this situation can be described by introducing a noise voltage and a noise current source at every 

interconnecting port, as shown in Figure E-1. 

 

Under small noise perturbations, the noise-induced deviation ],[ HB XX  of the system state from the 

autonomous (noiseless) steady state ],0[ SS
HX can be quantitatively expressed by perturbing expression 

FXXE HB ),(  in the neighborhood of the steady state as 
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where  
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and M is the Jacobian matrix of the HB errors and can be expressed as 
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At a steady state condition, BHB MX  0  and 0HBM  and the system of equations will be reduced to 

a set of uncoupled equations as 
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In the equation above, )(BBBB JXM  is responsible for the mechanism of the conversion noise, 

which is being generated by the exchange of the power between the sidebands of the unperturbed large-

signal steady state through the frequency conversion in the nonlinear sub-network/devices. Equation 

)(HHHH JXM  is responsible for mechanism of modulation noise, which is being described as a 

jitter of the oscillatory steady state.  

 

 Noise Generation in Oscillators 

 

The physical effects of random fluctuations taking place in the circuit are different depending on their 

spectral allocation with respect to the carrier. 

 

Noise components at low frequency deviations result in frequency modulation of the carrier through mean-

square frequency fluctuation proportional to the available noise power. 

 

Noise components at high frequency deviations result in phase modulation of the carrier through mean-

square phase fluctuation proportional to the available noise power. 

 

Frequency Conversion Approach 

The circuit has a large-signal time-periodic steady state of fundamental angular frequency 0 (carrier).  

Noise signals are small perturbations superimposed on the steady state, represented by families of pseudo-

sinusoids located as the sidebands of the carrier harmonics. The noise sources are modeled as pseudo-
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sinusoids having random amplitudes, phases, and deterministic frequencies corresponding to the noise 

sidebands. 

 

Therefore, the noise performance of the circuit is determined by the exchange of the power between the 

sidebands of the unperturbed steady state through frequency conversion in the nonlinear subnetwork.  

From the expression )(BBBB JXM  , it can be seen that the oscillator noise is essentially an additive 

noise that is superimposed on each harmonic of a lower and upper sideband at the same frequency offset. 

 

Conversion Noise Analysis 

 

Consider a set of noise currents and voltage sources connected to the linear/nonlinear sub-network ports 

as shown in Figure E-1. The vectors of the sideband phasor of such sources at the pth noise sideband 

+p0 are represented by Jp() and Up(), respectively, where  is the frequency offset from the carrier 

(0    0).  Due to the perturbative assumption, the nonlinear subnetwork can be replaced with multi-

frequency linear multi-port described by a conversion matrix. The flow of noise signals can be computed 

by the conventional linear circuit techniques. 

 

Assuming that the noise perturbations are small, the kth sideband phasor of the noise current through a 

load resistance R may be expressed through frequency-conversion analysis by the linear relationship as  

 

)()()()()(
,,

 



nH

nHp
p

U
nH

nHp
p

J
k UTJTI

pkpk

   (E-60) 

 

For k=0, upper and lower sideband noise is )(0 I and )(0 I = )(0 I . 

 

)(
,
J

pk
T and )(

,
U

pk
T are the conversion matrices and nH is the number of the carrier harmonics taken into 

account in the analysis. From the equation above, the correlation coefficient of the kth and rth sidebands of 

the noise delivered to the load can be given as 
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where ‘ * ’ denotes the complex conjugate, ‘  ’denotes the conjugate transposed and  

  denotes the ensemble average. )(pJ and )(pU  are the side-band noise sources. 

 

From the above expression of correlation coefficient of the kth and rth sidebands )(, rkC , the power 

available from the noise sources is redistributed among the all sidebands through frequency conversion, 

and this complex mechanism of inter-frequency power flow is described by the family of the sideband-

sideband conversion matrices )(. J
pkT and )(. U

pkT . 

 

The noise power spectral density delivered to the load at +k0 can be given as 
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The Noise Performance Index Due to Frequency Conversion 
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The PM noise due to frequency conversion, the AM noise to carrier ratio due to frequency conversion, 

and the PM-AM correlation coefficient due to frequency conversion can be expressed in terms of simple 

algebraic combination of the equations above. 

 

The PM Noise for the kth harmonic can be expressed as 
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where  

 

2)( ck  = PM noise at kth harmonic, subscript ‘c’ in   ck  stands for frequency-conversion. 

 

)(),(  kk NN   = noise power spectral densities at the upper and lower  sidebands of the kth harmonics. 

 

)(, 

kkC  = Correlation coefficient of the upper and lower sidebands of the kth  carrier harmonics. 

  

)2exp( ss
k

SS
k jI   = kth harmonic of the steady-state current through the load. 

 

R = load resistance 

 

 =Represents the ensemble average 

 

AM noise for the kth harmonic can be given as 
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where  

 

2)( ckA  = AM noise to carrier ratio at kth harmonic, subscript ‘c’ in )(ckA  stands for frequency-

conversion. 

 

)(),(  kk NN  = noise power spectral densities at the upper and lower sidebands of the kth harmonic. 

 

)(, 

kkC = correlation coefficient of the upper and lower sidebands of the kth carrier harmonic. 

  

)2exp( ss
k

SS
k jI   = kth harmonic of the steady-state current through the load. 

 

R = load resistance. 

 

 =Represents the ensemble average. 

 

For k = 0, expression for )(kI can be given as 
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 )()( 00  NN kk  which is pure AM noise. 

 

The PM-AM correlation coefficient for the kth harmonic can be given as 
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where 

 

)(PMAM
ckC  = PM-AM noise correlation coefficient for the kth harmonic, subscript ‘c’ in )(PMAM

ckC  

stands for frequency-conversion. 

 

)(),(  kk NN  = noise power spectral densities at the upper and lower sidebands of the kth harmonic. 

 

)(, 

kkC = correlation coefficient of the upper and lower sidebands of the kth carrier harmonic. 

  

)2exp( ss
k

SS
k jI   = kth harmonic of the steady-state current through the load. 

 

R = load resistance. 

 

  = represents the ensemble average. 
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The frequency conversion approach frequently used has the following limitations. 

 

The frequency-conversion approach is not sufficient to predict the noise performance of an autonomous 

circuit.  The spectral density of the output noise power, and consequently, the PM noise computed by the 

conversion analysis, is proportional to the available power of the noise sources. 

 

In the presence of both thermal and flicker noise sources, PM noise, due to frequency conversion, raises 

as 1  for, and approach a finite limit for  like kT.   

 

Frequency conversion analysis correctly predicts the far-carrier noise behavior of an oscillator, but the 

oscillator noise floor does not provide results consistent with the physical observations at low frequency 

deviations from the carrier. 

 

This inconsistency can be removed by adding the modulation noise analysis.  

 

Modulation Noise Analysis 

 

Equation )(HH
ssH

H
B

ssB

H JX
X
EX

X
E













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









  describes the noise-induced jitter of the oscillatory-

state, represented by the vectorXH , and under this approach, the PM noise is the result of direct 

frequency modulation by the noise sources present in the circuits.  

 

The noise sources under this approach are modeled as modulated sinusoids located at the carrier harmonics 

with random pseudo-sinusoidal phase and amplitude modulation causing frequency fluctuations with a 

mean-square value proportional to the available power of the noise sources.  The associated mean-square 

phase fluctuation is proportional to the available noise power divided by 2 and this mechanism is referred 

as modulation noise. 
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One of the entries of HX is 0 , where )(0  is the phasor of the pseudo-sinusoidal components of the 

fundamental frequency fluctuations in a 1 Hz band at frequency . Frequency jitter with a mean square 

value proportional to the available noise power is described by )(HHHH JXM  . 

 

In the presence of both thermal and flicker noise, the PM noise, due to modulation, raises as  3 for 

 0 and tends to go to 0 for  .  Modulation noise analysis correctly describes the noise behavior 

of an oscillator at low deviations from the carrier and does not provide results consistent with physical 

observations at high deviations from the carrier.  The combination of both phenomena explains the noise 

in the oscillator shown in Figure E-2 where the near-carrier noise dominates below X  and far-carrier 

noise dominates above X . 

 

 
 

 

From a strict harmonic-balance view point, the forcing term )(HJ  of the uncoupled equation 

)(HHHH JXM   represents a synchronous perturbation with time-independent spectral components at 

the carrier harmonics only, and it can be expressed in terms of side-band noise sources )(pJ and )(pU

, whose correlation matrices are calculated from following expression: 

 

)()()( *
,  rkrk IIRC       (E-74) 
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In a conventional (deterministic) HB analysis, JH() would contain real and imaginary parts of the 

synchronous perturbation phasor at k0.  But, in reality, forcing the term )(HJ at the kth harmonic arises 

due to superposition of the upper and lower sideband noise at +k0, and for noise analysis, the noise 

source waveforms may be viewed as sinusoidal signal at frequencies k0 slowly modulated in both 

amplitude and phase at the rate of . 

 

In equation (HHHH JXM  ), the phasor of the deterministic perturbations are replaced by the complex 

modulations laws, each generated by the superposition of an upper and lower sideband contribution. 

 

Under this quasi-stationary viewpoint, the real part of the constant synchronous perturbation is replaced 

by the phasor of the amplitude modulation law, and the imaginary part by the phasor of the phase 

modulation law.  

 

Thus, the expression for the noising forcing term )(HJ can be expressed as 
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T denotes the transpose operation and from Figure E-1, the equivalent Norton phasor of the noise source 

sidebands is given as 

 

 )()()()()( 0  NkNkLkk UkYJJJ     (E-80) 

 

)( 0 kY  is the linear sub-network admittance matrix, )(LkJ and )(NkJ are the forcing terms 

corresponding to the linear and nonlinear sub-network.  

 

)(kJ  , )(kU are the phasor of the pseudo-sinusoids representing the noise components in 1 Hz 

bandwidth located in the neighborhood of the sidebands + k0. 

 

In phasor notation with a rotating vector exp (jt), the forcing term JH() can be given as 
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After replacing the forcing term )(HJ  in the earlier given uncoupled equation )(HHHH JXM  by 

    TT
KK

T
kk

T jJjJJJJ ....)()(...)()()....(0    , the entries of the perturbation vector HX  

become a complex phasor of the pseudo-sinusoidal fluctuations of the corresponding entries of the state 

vector XH at frequency . 
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The solution of the equation )(HHHH JXM   for XH  and for 0 can be given by introducing row 

matrix S=[000..1..0], where the nonzero element corresponds to the position of the entry 0 in the vector

XH and we obtain  

 

)()(][)( 1
0  HFHHH JTJMS  

    (E-82) 

 

)(0  represents the phasor of the pseudo-sinusoidal component of the fundamental-frequency 

fluctuations in a 1 Hz band at frequency  and FT  is a row matrix. 

 

Furthermore, a straightforward perturbative analysis of the current of the linear sub-network allows the 

perturbation on the current through the load resistor R to be linearly related to the perturbation on the state 

vector, XH  is obtained from equation )(HHHH JXM  , and the phasor of the pseudo-sinusoidal 

component of the load current fluctuations in 1 Hz band at a deviation  from k0 can be given as 

 

)()(  HAKk JTI        (E-83) 

 

AKT   is a row matrix and )(wJ H is a forcing term of the uncoupled equation. 

 

The Noise Performance Index Due to Contribution of the Modulation Noise 

 

PM noise due to noise modulation, AM noise due to noise modulation, and PM-AM correlation coefficient 

due to noise modulation can be expressed in terms of a simple algebraic combination of the equations 

above. 

 

PM noise for the kth harmonic due to contribution of modulation: 
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  FHHFk TJJTk )()()( 2

2
2





    (E-84) 

 

where   

 

2)(mk =PM noise at kth harmonic, subscript ‘m’ in  mk  stands for modulation mechanism. 

 

)()(  

HH JJ = Correlation matrix. 

 


FT  = Conjugate-transpose. 

 

)(wJ H = Forcing-term. 

 

 =Represents the ensemble average denotes the ensemble average. 

 

AM noise due to modulation contribution:  

 

The kth harmonic of the steady state current through the load can be expressed as    

  

)()( 0 HkR
SS
k XVkYI       (E-85) 

 

where  

 
SS
kI =  kth harmonic of the steady state current through the load. 

 

)( 0kYR = Trans-admittance matrix. 
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kV = Vector representation of the kth harmonics of the voltages at the nonlinear subnetwork ports. 

 

By perturbing SS
kI  in the neighborhood of the steady state, the phasor of the pseudo-sinusoidal component 

of the kth harmonic current fluctuations at frequency  can be expressed as a linear combination of the 

elements of the perturbation vector XH . 

From the equation )()(  HHHHHH
ssH

H JXMJX
X
E
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







 ;  )()( wJTI HAKk    

the modulation contribution for the kth harmonic AM noise to carrier ratio at frequency  can be 

expressed as 
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where 

 

2)( mkA  = AM noise to carrier ratio at kth harmonic, subscript ‘m’ in )(mkA  stands for modulation-

mechanism. 

 

)()(  

HH JJ = Correlation matrix. 

 

)(wJ H = Forcing-term. 

 

AkT =Row-matrix. 

 


AkT = Conjugate-transpose. 
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PM-AM Correlation Coefficient 

 

From the equation )()(  HHHHHH
ssH

H JXMJX
X
E












 , the information of the RF phase is lost 

and it is not possible to calculate the phase of the PM-AM correlation coefficient from the expressions 

above.  In order to calculate PM-AM correlation, the first order approximation of the normalized kth 

harmonic PM-AM normalized correlation coefficient )(ckC computed from frequency conversion 

analysis is given as 
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and can be correctly evaluated from frequency conversion analysis even for 0 

  

where )(ckC is the normalized PM-AM correlation coefficient, which compensates for the incorrect 

dependency of   2
 ck  of the frequency at low frequency offsets from the carrier.  From the PM-

AM correlation coefficient above due to modulation contribution to the kth harmonic can be given as 
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Now, the near-carrier noise power spectral density Nk() of oscillator, due to modulation contribution at 

an offset  from k0 ( -nH k  nH), can be given as 
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where 

 

JH() = vector of Norton equivalent of the noise sources. 

 

TF = frequency transfer matrix. 

 

R = load resistance. 

 

Ik
ss = kth harmonic of the steady-state current through the load. 

 

 Summary 

The majority of this work is a result of research done at my company Compact Software and friends and 

colleagues like Prof. Rizzoli, Prof. Fred Rosenbaum, and my engineers. My contribution was essentially 
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the semiconductor noise addition which was tested and validated through the work done by Dr. Ajay 

Poddar, and my Ph.D. students Dr. Anisha Apte, and Dr. Wolfgang Griebel. An interesting problem was 

the ability to measure phase noise down to two times kT0 as only recently the Rohde & Schwarz FSWP 

had the capability for the required dynamic range. In the case of Griebel’s Ph. D, we had to measure 10 

seconds instability to a resolution of 1e-14, which was needed for the prediction of accurate landing on 

planets like Mars with the Voyager system. In general I would like to thank each and every one who made 

this successful research possible. 
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